
e-ISSN : 2443-2229 Jurnal Teknik Informatika dan Sistem Informasi

Volume 2 Nomor 1 April 2016

21

AP-ASD1: An Indonesian Desktop-based Educational

Tool for Basic Data Structure Course

Lucky Christiawan
#1

, Oscar Karnalim
#2

Information Technology, Maranatha Christian University

Bandung, Indonesia

lucky.christiawan@gmail.com

oscar.karnalim@gmail.com

Abstract— Although there are so many available data structure

educational tools, it is quite difficult to find a suitable tool to aid

students for learning certain course [1]. Several major

impediments in determining the tool are teaching preferences,

language barrier, confusing terminologies, internet dependency,

various degree of material difficulty, and other environment

aspects. In this research, a data structure educational tool called

AP-ASD1 is developed based on basic algorithm and data

structure course (ASD 1). Since AP-ASD1 is developed following

course materials and not vice versa, this educational tool is

guaranteed to fit in our needs. The feasibility of AP-ASD1 is

evaluated based on two factors which are functionality correctness

and survey. All features are correctly functioned and yield

expected output whereas survey yields fairly good result (84,305%

achievement rate). Based on our survey, AP-ASD1 meets

eligibility standard and its features are also successfully

integrated. Survey also concludes that this application is also quite

effective as a supportive tool for learning basic data structure.

Keywords—educational tool; algorithm visualization; basic data

structure; dynamic algorithm tracking

I. INTRODUCTION

Teaching data structure in computer science class requires

several illustrations about how the data structure works in order

to improve student’s understanding. Illustrations are usually

drawn manually on the board, stored as animations in

presentation file, or visualized with educational tools [2].

Hand-drawn illustration is the most conventional representation

which let lecturer illustrates the flow of data structure by

drawing its steps on the board. This mechanism may be the

most comfortable one since lecturer can adjust his/her

illustration by adding, removing, or updating several specific

details based on students’ feedbacks. However, this mechanism
consumes a lot of time and may yield faulty steps especially

when the lecturer is in a rush. Storing illustrations as

animations in presentation tools (e.g. Microsoft PowerPoint or

Prezi) is a better approach since it is more efficient in terms of

time and its steps are definitely error-free. However, most

animations in presentation tools are built hardcoded which is

quite difficult to incorporate dynamic test cases.

There is a long tradition among Computer Science lecturers

of using educational tool software to teach algorithms since it

may handle dynamic test cases efficiently in terms of time

(lecturer does not require to write/draw algorithm steps on

board) [3, 4, 5]. Although many data structure educational tools

have been developed and can be easily found on the internet

(e.g. AlgoViz [6], VisuAlgo [7] and OpenDSA [8]), these tools

may have different terminologies with class material since each

university may have its teaching preferences due to student

characteristics. Language used in educational tools also affects

student understanding since some of them are only fluent in

their native language and forcing them to learn foreign

language and data structure at the same time may lower their

chance to understand.

In this research, an Indonesian desktop-based data structure

educational tool has been developed based on Algorithm and

Data Structure 1 course. This tool is called AP-ASD1 (Aplikasi

Pembelajaran Algoritma dan Struktur Data 1) which is an

acronym of “Educational tool for Algorithm and Data Structure
1 course” in Indonesian language. Algorithm and Data
Structure 1 (ASD 1) is a computer science course in Maranatha

Christian University which consists of basic data structure

materials such as stack, queue, linked list, and priority queue.

To fulfill our needs, this tool is developed as Indonesian-

language desktop-based application with no internet

requirement. It also has several additional features such as

dynamic algorithm tracking mechanism and embedded course

materials.

II. RELATED WORKS

A. AlgoViz

AlgoViz which is the successor of AlgoViz Wiki [9] is an

algorithm visualization (AV) portal that contains links to

various AV websites [6]. It is intended to connect educators,

developers, and users for AVs. This portal homepage can be

seen in Figure 1. It is built on Drupal [10] (an open-source

content management system written in PHP) and can be

accessed from http://algoviz.org/.

AlgoViz portal does not only enlist all available AV

websites but also provides its quality assessment information

such as ranking given by catalog editor, user rating,

description, review information, field reports, and user

comments [11]. These quality assessments can be used as user

Jurnal Teknik Informatika dan Sistem Informasi e-ISSN : 2443-2229

Volume 2 Nomor 1 April 2015

22

consideration before exploring the target site. Since this portal

is greatly depends on AV community, several mechanism are

applied in order to keep the members in touch such as AlgoViz

awards, forum, email notification, RSS feeds, and social-

media-based notifications.

Figure 1. AlgoViz Homepage

B. VisuAlgo

VisuAlgo is a web-based educational tool which visualizing

algorithm and data structure through animation [7, 12]. This

website was conceptualized by Steven Halim in 2011 with the

aims of improving teaching of data structures and algorithms

through dynamic interactive visualization. VisuAlgo can be

accessed from http://visualgo.net/ where its homepage can be

seen in Figure 2. This website is utilized in several computer

science class at National University of Singapore (NUS) and

covers various algorithm and data structure materials such as

sorting, bitmask, linked list, hash table, binary heap, binary

search tree, graph, segment tree, and suffix tree.

Figure 2. VisuAlgo Homepage

VisuAlgo improves learning and teaching of algorithms in

the following ways [2]:

1. VisuAlgo visualizes algorithm flow through animation

and highlighted pseudocode which improves student

understanding. These steps can be repeated as many as

needed so that students can focus on algorithm part that

has not been understood.

2. VisuAlgo applies dynamic visualization which let

students use their own examples and see the result.

3. VisuAlgo covers various algorithm and data structure so

that students have a “one-stop” place for all their
learning needs.

C. OpenDSA

OpenDSA aims to build a complete open-source, online

eTextbook for algorithm and data structure courses that

integrates textbook text with a rich collection of interactive

activities (including algorithm visualizations) [8, 13, 14, 15].

OpenDSA can be accessed from http://algoviz.org/OpenDSA/

(this tool is registered in AlgoViz portal) and its homepage can

be seen in Figure 3. This website is built with HTML 5

technology which enables course modules to be available for

use in many modern browsers with no additional plugins or

software needed.

Figure 3. OpenDSA Homepage

OpenDSA is designed with the following educational goals

[16]:

1. To become a leverage technology that present course

material in a way that makes learning easier.

2. Engaging and motivating students through interactive

activities.

3. To evaluate student performance easier through

exercises and self-assessments.

A sample of eTextbook generated by OpenDSA can be seen

in Figure 4 [8]. Each eTextbook is formed as a series of HTML

pages which consists of algorithm and data structure materials

[16]. Lecturer for a given course have control over the content,

such as reuse, alter, remove, or add existing materials on it.

Each material is converted as an interactive module which

algorithm visualization is supported by JSAV, a JavaScript

algorithm visualization library [17]. It also may consist of

interactive activities such as interactive exercises, algorithmic

calculator, and performance simulator [16]. Exercises can be

conducted in several ways which are simple questions,

proficiency exercises, and programming exercises. Proficiency

exercises aim to verify student understanding about how a

given algorithm works by requiring them to simulate its

behavior whereas programming exercises aim to verify student

understanding about how to implement an algorithm or using a

certain data structure. Several minor features are also

embedded such as algorithmic calculator and performance

simulator. Algorithmic calculator is conducted to calculate

e-ISSN : 2443-2229 Jurnal Teknik Informatika dan Sistem Informasi

Volume 2 Nomor 1 April 2016

23

complex part such as hashing function whereas performance

simulator is conducted to “measure” how many processes
needed for executing an algorithm.

Figure 4. A Sample of E-Textbook Generated by OpenDSA

D. ViLLE

ViLLE is a desktop-based program educational tool for

teaching programming to novice programmer where student

can see the dynamic behavior of program execution through

variable changes between each instruction, function calls

through stack view, and even the description of certain code

line [18]. Function call through stack view is utilized to let

students understand recursion whereas code line description is

required to tell specific detail of certain line (which is

frequently used in advanced algorithm). ViLLE sample user

interface can be seen in Figure 5. Current code line is

highlighted whereas user gains flexible control of the

visualization (both forwards and backwards).

Figure 5. ViLLE Sample User Interface

ViLLE also has additional benefits such as language-

independency, comparing execution of two programming

languages, pop-up questions, and breakpoints [18]. Language-

independency let instructor to utilize ViLLE in many

programming languages by defining its equivalence with Java

syntax. Comparing execution of two programming language is

visualized as two parallel code editor with different highlight

mark but points to similar semantic steps. This feature is

sometimes needed when students are required to know

translation between two programming language. Pop-up

questions are designed to maintain student interaction towards

the application. It also helps the lecturer to measure student

understanding about the code. Breakpoints are utilized to let

this application run similar to standard debugger.

E. JHAVE

JHAVE (Java-Hosted Algorithm Visualization

Environment) is a support environment for AV systems where

users can design their AV on it [19]. It provides several user

benefits such as a standard set of VCR-like controls, graphical

representation, information and pseudo-code window, input

generator, pop-up question mechanism, and even several

supportive content generation tool. Sample user interface of

AV developed in JHAVE can be seen in Figure 6. Lecturers

may design their AV including what information is represented

during that phase. JHAVE is designed in client-server

architecture for dynamic material update.

Figure 6. JHAVE Sample User Interface

F. Research Contribution

Feature comparison of existing CS educational tools and

AP-ASD1 can be seen in Table I. AV represents AlgoViz, VA

represents VisuAlgo, OD represents OpenDSA, V represents

ViLLE, JH represents JHAVE, and AP represents AP-ASD1.

Question symbol (“?”) represents uncertainty where the
existence of that feature is greatly depend on its AV designer.

TABLE I

FEATURE COMPARISON OF EXISTING CS EDUCATIONAL TOOLS AND AP-ASD1

Feature AV VA OD V JH AP

Algorithm and

Data Structure 1

course-material

compability

× × × × × √

Consistent UI √ × √ √ √ √

Consistent

terminologies
√ × × √ × √

Jurnal Teknik Informatika dan Sistem Informasi e-ISSN : 2443-2229

Volume 2 Nomor 1 April 2015

24

Feature AV VA OD V JH AP

Python algorithm

tracking
× ? × × × √

Detailed data

structure

explanation

√ ? √ × ? √

No-internet access

dependency
× × × √ × √

Data structure

visualization
√ √ √ × √ √

Since AP-ASD1 is developed following course materials

and not vice versa, this educational tool is guaranteed to fit in

our needs. As we know, it is quite difficult to find and integrate

suitable data structure educational tools in a course [1].

Although AlgoViz has access to various AV websites, it cannot

be simply integrated in course materials since each AV

websites has different UI and terminologies. Inconsistent UI

and terminologies may lower student understanding since they

need to adapt on each AV website. AP-ASD1 is quite similar to

VisuAlgo except that it has two additional features which are

fully synchronized with ASD 1 course materials. They are

synchronized Python algorithm tracking and detailed data

structure description. Synchronized Python algorithm tracking

is utilized for easy adaptation with algorithm language

(Python) whereas synchronized detailed data structure

description is required to assist students while learning.

OpenDSA may fulfill our requirements but it requires

internet access which is not suitable in Indonesia. Internet

access in Indonesia is still relatively slow and its coverage is

limited. To overcome this impediment, AP-ASD1 is developed

as standalone application which does not rely on internet

connection. Furthermore, since OpenDSA is a web based

application which has browser-dependent UI, OpenDSA may

yield inconsistent output in several minor browsers (this UI

problem is also a reason why AP-ASD1 is built as desktop

application). Although both ViLLE and AP-ASD1 do not rely

on internet access, ViLLE only handles algorithm tracking and

does not integrate data structure visualization. JHAVE also

have similar impediment with other internet-based application

to fit in our case which is internet access requirement.

In this research, an Indonesian-language desktop-based data

structure educational tool named AP-ASD1 has been

developed. It is fully synchronized with ASD 1 course

materials in Maranatha Christian University which guarantees

the fulfillment of our course needs. Several main features such

as data structure visualization, flexible input, algorithm

tracking, instruction log, detailed data structure description,

and tutorial are also embedded. Furthermore, all instructions

and descriptions in AP-ASD1 are represented in Indonesian

language to overcome language barrier.

III. ANALYSIS, DESIGN, AND IMPLEMENTATION

A. Feature Analysis

Based on our course needs and implementation

environments, AP-ASD1 is built with these following features:

1. All instructions and descriptions in AP-ASD1 is

represented in Indonesian language to overcome

language barrier. Most AP-ASD1 users are Indonesian

student whose native language is Indonesian.

2. Data structure terminologies are synchronized with

course materials to avoid confusion through various

terminologies. As we know, several terms may refer to

the same thing (e.g. node and vertex).

3. Data structures are visualized and animated through

graphical representation to improve student

understanding.

4. AP-ASD1 is featured with dynamic algorithm tracking to

show how the algorithm works. Variable states and

instruction description for each execution are also shown

to clarify its execution sequences.

5. Detailed data structure materials are embedded in AP-

ASD1 as an additional feature to help students recall

course materials.

6. AP-ASD1 require no internet access since internet access

in Indonesia is still limited and relatively slow.

7. AP-ASD1 is developed as desktop-based application to

yield consistent UI and functionality. Web-based

application may not work properly since it depends on

browsers as its interpreter (especially on minor

browsers).

8. AP-ASD1 have consistent UI between modules for ease

of use.

Since AP-ASD1 aims to improve student understanding

about basic data structure in ASD 1 course, AP-ASD1 modules

are based on ASD 1 course materials which correlation can be

seen in Table II. All data-structure-related course materials

except array are implemented. Array is excluded since it is

only revisited in ASD 1 for learning abstract data type (in our

curriculum, array is also introduced in basic programming

course which must be taken before ASD 1). Several minor data

structures are also excluded such as queue in naive real world

array implementation, queue in moving head array

implementation, and circular linked list. These data structure

are excluded since they are not efficient and seldom used in

real programming tasks.

TABLE II

THE CORRELATION BETWEEN ASD 1 COURSE MATERIALS AND AP-ASD1

MODULES

Course Material AP-ASD1 Module

Introduction about data

structure
-

Array : Revisited -

Stack (array) Stack in array implementation

Queue (array)
Queue in circular array

implementation

Standard linked list Standard linked list

Stack and queue in linked

list implementation

Stack in linked list

implementation

Queue in linked list

implementation

e-ISSN : 2443-2229 Jurnal Teknik Informatika dan Sistem Informasi

Volume 2 Nomor 1 April 2016

25

Course Material AP-ASD1 Module

Priority queue
Priority queue in linked list

implementation

Linked list variations
List that record head and tail

Double-pointer linked list

Recursion -

Advance Sorting -

B. Implementation

The main window of AP-ASD1 can be seen in Figure 7

whereas its view when visualizing an operation of data

structure can be seen in Figure 8. It consists of several

components which are module selection, current module bar,

module operation panel, visualization panel, algorithm panel,

instruction log, and operation history. They are represented in

Figure 7 as A to G respectively.

Figure 7 AP-ASD1 Main Window

Figure 8. AP-ASD1 Main Window when Visualizing Insert Last on Standard Linked List

Jurnal Teknik Informatika dan Sistem Informasi e-ISSN : 2443-2229

Volume 2 Nomor 1 April 2015

26

Module selection panel which can be seen in Figure 9

enables user to select course modules. To simplify module

selection, modules are categorized based on its data

structure name and grouped using tree view. User can

expand or shrink each menu by clicking it. Current module

bar consists of several information and setting about the

current module. Beside showing current course title, this bar

is also featured with tracking mode checkbox, next and prev

button for algorithm tracking, and detail button. Tracking

mode checkbox is checked if user want to see algorithm

tracking and its algorithm tracking can be controlled

through next and prev buttons. Detail button let user access

detailed data structure material of the current module which

example view can be seen in Figure 10. Each module is

described based on course materials and featured with

relevant graphics.

Figure 9. Module Selection Panel

Figure 10. Detailed Data Structure Material Panel Example: Queue in

Linked List Implementation

User may instruct current data structure to do some

operations by utilizing module operation panel. The

example of module operation panel can be seen in Figure

11. User can choose any operation by clicking selected

button and give several input needed in given textfields.

Standard textfields are used as input mechanism to keep

AP-ASD1 as simple as possible which let user prepare all

the input before executing an operation. Each operation

affects visualization panel, algorithm panel, instruction log,

and operation history.

Figure 11. The Example of Module Operation Panel: Standard Linked List

The example of data structure visualization on

visualization panel can be seen in Figure 12. All graphical

representations are based on course materials to maintain

consistency between AP-ASD1 and course materials.

Before animation of data structure operation occurs, step by

step of algorithm tracking is presented in algorithm panel.

Current line is highlighted and all of its variables are

recorded in variable log. The example of algorithm panel

can be seen in Figure 13 whereas its instruction log can be

seen in Figure 14. User can go forward and backward for

each instruction to enable user check operation flow based

on algorithm given and instruction log. The movement of

current instruction in operation flow is controlled using

keyboard key (enter and backspace) or current module bar’s
control buttons. Instruction log stores not only variables but

also descriptive information about each instruction

execution. All instruction execution log is recorded in

instruction log as a list to enable user see variable changes

between instructions. Animation and algorithm tracking are

e-ISSN : 2443-2229 Jurnal Teknik Informatika dan Sistem Informasi

Volume 2 Nomor 1 April 2016

27

automatically skipped if user have already unchecked

tracking mode checkbox in current module bar. Each

operation instructed by user are recorded in history which

example can be seen in Figure 15. History panel is expected

to help user remember which operations have been executed

to yield certain state of data structure (User can see the state

of data structure in data structure visualization panel).

Figure 12. The Example of Data Structure Visualization: Double-Pointer

Linked List

Figure 13. The Example of Algorithm Panel: Delete Last on List that

Record Head and Tail

Figure 14. The Example of Instruction Log: Delete Last on List that

Record Head and Tail

Figure 15. The Example Operation History: Standard Linked List

C. Dynamic Algorithm Tracking Implementation

Since algorithm tracking is generated based on operation

flow and data structure state, it is quite tricky to enable user

to move forward and backward through each instruction

during the execution of an operation. However, this

mechanism can be implemented using pre-calculated list

approach. Algorithm is translated to “embedded”
development code which stores states for each instruction

execution in a list. Therefore, algorithm tracking can be

conducted by traversing each element in the generated list.

Selected algorithm can be translated to “Embedded”
development code by following several steps described in

Figure 16. Each line in selected algorithm is translated to

target source code with one-to-one line equivalence where

line i in algorithm is equivalent with line i in target source

code. Log storage initialization instruction is embedded at

the beginning of target source code whereas logger

instruction is embedded at the end of each target source

code’s line. Log records all useful information such as data

structure state, variable state, line of code, and natural

language description about that line. In our case, algorithm

is written in Python since Python is both algorithmic and

implementation language in ASD 1 course. It is translated

to C# because C# is AP-ASD1 development programming

language.

Figure 16. Translation Steps from Algorithm to “Embedded” Development
Code

Before algorithm tracking starts, selected algorithm

which had been translated into “embedded” source code is
executed and its log is stored as a list. The movement

between each instruction is implemented as a traversal

between elements in list. As mentioned before, log consists

of several information such as data structure state, variable

state, natural language description, and line of code.

Variable state and natural language description are stored

and shown as a list in instruction log panel whereas line of

code is used to determine which line is highlighted in

algorithm panel. Data structure state is used to modify

Jurnal Teknik Informatika dan Sistem Informasi e-ISSN : 2443-2229

Volume 2 Nomor 1 April 2015

28

current data structure state in visualization panel and

memory.

IV. EVALUATION

The feasibility of AP-ASD1 is evaluated based on two

factors which are functionality correctness and survey.

Functionality correctness is measured using black-box

testing whereas survey is conducted by distributing

questionnaires on ASD 1 students which have used AP-

ASD1 in the class.

A. Black-box Testing

Black-box testing is conducted to validate functionality

correctness of AP-ASD1 features. A feature is considered

correctly functioned if and only if that feature produces

similar result with its expected result. Based on our

evaluation, All AP-ASD1 features are correctly functioned

and yield expected results. Validated AP-ASD1 features are

categorized as follows:

1. Module change through module selection It also

includes content consistency in current module bar,

module operation panel, visualization panel,

instruction log, and operation history.

2. Data structure state and visualization (including

animation sequence) for each operation.

3. The flow of dynamic algorithm tracking which

involves algorithm panel and instruction log.

4. Miscellaneous form components which are not

evaluated in other categories.

B. Survey

Survey aims to measure AP-ASD1 subjective

effectiveness from the user perspective. It is conducted by

asking ASD 1 students to answer several questions based on

their experience toward AP-ASD1. These questions are

divided into two parts which are standard effectiveness

measurement questions and feature-impact measurement

questions. Each question in both parts are marked with

unique ID to be easily referred in other sections. Students

can answer each question with a number ranged from 0 to 5

inclusively where 0 means this objective is not achieved at

all and 5 means it is completely achieved.

Standard effectiveness measurement questions can be

seen in Table III. All questions given in Table III are

generated based on general measurement objectives which

is used to measure AP-ASD1 in general. Beside general

aspects, several major features are also evaluated to validate

its impact through feature-impact measurement questions.

Feature-impact measurement questions which are shown at

Table IV are generated based on AP-ASD1 major features

in one-to-one correlation. For clarity, major features are

features which described explicitly in analysis section

(Indonesian-language instruction and description in AP-

ASD1, course-synchronized data structure terminologies,

data structure visualization, dynamic algorithm tracking,

detailed data structure materials, no dependence to internet

access, desktop platform for consistent UI and functionality,

and consistent UI for ease of use).

TABLE III

STANDARD EFFECTIVENESS MEASUREMENT QUESTION

Question

ID

Measurement

Objective
Question

A1 Ease of use How easy can you use AP-ASD1?

A2 Intuitive UI How intuitive is the UI of AP-ASD1?

A3

UI and

functionality

consistency

How consistent are all UI

components and functionalities

between modules in AP-ASD1?

A4
User

Convenience

How convenient is AP-ASD1 in

terms of use?

A5
Declarative

tutorial

How declarative is application

tutorial given in AP-ASD1?

A6
Course material

synchronization

How good is AP-ASD1 in sync with

data-structure-related ASD 1 course

materials?

A7 Learning impact

How helpful is AP-ASD1 to learn

basic data structure, especially in

ASD 1 course?

Survey are given to students in ASD 1 class for short odd

semester of academic year 2015/2016. There are 15 students

of 2015 which take ASD 1 course for the first time. They

are instructed to utilize AP-ASD1 as a supplementary tool

to understand basic data structure during ASD 1 course.

When students fill up the survey, they are instructed for not

writing their identity on survey page. This mechanism is

conducted to let they measure the impact of AP-ASD1

objectively. All questions and instructions in survey are

translated in Indonesian language due to language problem

(most student only understand their native language which

is Indonesian language). Survey was given at the end of

semester when all materials have been taught.

TABLE IV

FEATURE-IMPACT MEASUREMENT QUESTION

Question

ID

Feature Question

B1

Indonesian-

language

instruction and

description in

AP-ASD1

How good do you understand the

semantic of all instructions and

descriptions given in AP-ASD1?

B2

Course-

synchronized

data structure

terminologies

How similar data structure

terminologies used in AP-ASD1 with

course material?

B3
Data structure

visualization

How helpful is data structure

visualization to understand certain

data structure?

B4

Dynamic

algorithm

tracking

How helpful is dynamic algorithm

tracking to understand the algorithm

of data structure operation?

B5

Detailed data

structure

materials

How declarative is detailed data

structure material in AP-ASD1?

e-ISSN : 2443-2229 Jurnal Teknik Informatika dan Sistem Informasi

Volume 2 Nomor 1 April 2016

29

Question

ID

Feature Question

B6

No dependence

to Internet

access

How adaptive is AP-ASD1 in

different signal level of Internet

connection?

B7

Desktop

platform for

consistent UI

and

functionality

How big the impact of desktop

platform for consistent UI and

functionality in AP-ASD1?

B8
Consistent UI

for ease of use

How big the impact of consistent UI

for “ease of use” aspect?

The statistic of our survey can be seen in Table V which

are considered as a good result since most objectives are

rated 4 or more (nearly completely achieved). Average

values are resulted from averaging all scores for selected

question whereas mean average is resulted from averaging

all average values. Although A4 is an exceptional case since

a student did not answer it on his/her survey, its average

value still can be calculated based on remaining responders.

In Table V, lowest average value is red-marked and its

highest one is blue-marked. A2 has the lowest objective rate

since several students found the UI of AP-ASD1 is less

intuitive. They expect more detailed explanation in tool tip

and algorithmic information. Furthermore, dynamic

algorithm tracking is the most helpful feature since B4

scores the highest among all survey questions. Based on our

responders, we can conclude that most students who

experience difficulty when understanding how certain

operation works can be aided by algorithm tracking in AP-

ASD1. In our survey, a student misinterprets B6 question

which guide him/her to rate 0 on that question. This student

considers B6 question as an unrelated one since this

application does not require internet connection.

AP-ASD1 meets eligibility standard of a published

application since it scores 84.463% on standard

effectiveness survey (question A1-A7). Furthermore, all

major features which are based on ASD 1 course needs and

implementation environments has been successfully

integrated since it scores 84.167% on feature-impact survey

(question B1-B8). Since question A7 yield 4.4 of 5, it can

be concluded that AP-ASD1 is quite effective as a

supportive tool for learning basic data structure, especially

in ASD 1 course.

TABLE V

SURVEY STATISTICS

Question

ID

Survey Statistic

0 1 2 3 4 5 Average Average (%)

A1 2 7 6 4,267 85,333

A2 1 2 10 2 3,867 77,333

A3 3 9 3 4,000 80,000

A4 8 6 4,429 88,571

A5 3 6 6 4,200 84,000

A6 2 5 8 4,400 88,000

A7 1 1 4 9 4,400 88,000

B1 3 8 4 4,067 81,333

B2 1 1 7 6 4,200 84,000

B3 3 7 5 4,133 82,667

B4 6 9 4,600 92,000

B5 1 11 3 4,133 82,667

B6 1 2 1 11 4,333 86,667

B7 3 7 5 4,133 82,667

B8 4 6 5 4,067 81,333

Mean Average of Standard

Effectiveness Survey
4.223 84.463

Mean Average of Feature Impact

Survey
4.208 84.167

Mean Average in General 4,215 84,305

V. CONCLUSIONS

Based on our research, several conclusions can be stated

which are:

1. AP-ASD1 is quite effective as a supportive tool for

learning basic data structure (especially in ASD 1

course) since learning impact aspect is rated quite

high (4.4 of 5)

2. All major features which are based on ASD 1 course

needs and implementation environments has been

successfully integrated since survey result of feature-

impact measurement achieves 84.167%. These

feature-based aspects are Indonesian-language

instruction and description in AP-ASD1, course-

synchronized data structure terminologies, data

structure visualization, dynamic algorithm tracking,

detailed data structure materials, no dependence to

internet access, desktop platform for consistent UI

and functionality, and consistent UI for ease of use.

3. AP-ASD1 meets eligibility standard of a published

application since it scores 84.463% on standard

effectiveness survey. Standard effectiveness survey

involves ease of use, intuitive UI, UI and

functionality consistency, user convenience,

declarative tutorial, course material synchronization,

and learning impact.

Jurnal Teknik Informatika dan Sistem Informasi e-ISSN : 2443-2229

Volume 2 Nomor 1 April 2015

30

4. AP-ASD1, an Indonesian-language desktop-based

educational tool for basic data structure course has

been successfully developed in C# platform.

5. All features on AP-ASD1 are correctly functioned

since it yields expected results. This statement is

concluded based on black-box testing result which

validates module change through module selection,

data structure state and visualization for each

operation, flow of dynamic algorithm tracking, and

miscellaneous form components.

VI. FUTURE WORK

In next research, we will integrate dynamic algorithm

typing in AP-ASD1 which let user write his/her algorithm

as an operation on certain data structure. User can modify

algorithm given in the course and see how his/her modified

algorithm works. This feature is expected to improve

student understanding based on two facts which are:

1. Several students are low-paced which require lecturer

to show how the algorithm works in more detailed

implementation.

2. Several students are curious with the implementation

of their logic and how unexpected result is produced

based on their logic.

Besides dynamic algorithm typing, log filter will be also

embedded since several students are quite overwhelmed

with complete information at instruction log section. They

used to try to understand how algorithm works by only

focusing on several less understandable parts.

REFERENCES

[1] C. A. Shaffer and A. J. D. Alon, "SIGCSE 2010 AlgoViz Survey

Results," March 2010. [Online]. Available:

http://algoviz.org/news/2010-03-25-sigcse-2010-algoviz-survey-

results.

[2] S. Halim, Z. C. Koh, V. B. H. Loh and F. Halim, "Learning

Algorithms with Unified and Interactive Web-Based Visualization,"

Olympiads in Informatics, vol. 6, pp. 53-68, 2012.

[3] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C.

Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger and J.

A. Velázquez-Iturbide, "Exploring the role of visualization and

engagement in computer science education," in ITiCSE-WGR '02

Working group reports from ITiCSE on Innovation and technology

in computer science education, New York, 2002.

[4] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart,

S. Ponce and S. H. Edwards, "Algorithm Visualization: The State of

the Field," ACM Transactions on Computing Education (TOCE),

vol. 10, no. 3, 2010.

[5] E. Fouh, M. Akbar and C. A. Shaffer, "The role of visualization in

computer science education," Computers in the Schools:

Interdisciplinary Journal of Practice, Theory, and Applied

Research, vol. 29, no. 1-2, pp. 95-117, 2012.

[6] "AlgoViz.org: The Algorithm Visualization Portal," [Online].

Available: http://algoviz.org/. [Accessed 7 12 2015].

[7] S. Halim, "VisuAlgo," [Online]. Available: http://visualgo.net/.

[Accessed 12 5 2015].

[8] "OpenDSA," [Online]. Available: http://algoviz.org/OpenDSA/.

[Accessed 5 12 2015].

[9] "Data Structures and Algorithm Visualization Wiki," Virginia Tech,

2006. [Online]. Available: http://algoviz.cs.vt.edu. [Accessed 5 12

2015].

[10] "Drupal," 2010. [Online]. Available: http://drupal.org,.

[11] C. A. Shaffer, M. Akbar, A. J. D. Alon, M. Stewart and S. H.

Edwards, "Getting Algorithm Visualizations into the Classroom," in

Proceedings of the 42nd ACM technical symposium on Computer

science education.

[12] E. T. Y. Ling, Teaching Algorithms with Web-based Technologies,

Singapore: B.Comp. Dissertation, Department of Computer Science,

School of Computing, National University of Singapore, 2014.

[13] C. Shaffer, V. Karavirta, A. Korhonen and T. Naps, "OpenDSA:

Beginning a community hypertextbook project," in The Eleventh

Koli Calling International Conference on Computing Education

Research, Finland, 2011.

[14] C. Shaffer, T. Naps and E. Fouh, "Truly interactive textbooks for

computer science education," in The Sixth Program Visualization

Workshop, Germany, 2011.

[15] S. Hall, E. Fouh, D. Breakiron, M. Elshehaly and C. Shaffer,

"Education innovation for data structures and algorithms courses,"

in ASEE Annual Conference, Atlanta, 2013.

[16] E. Fouh, V. Karavirta, D. A. Breakiron, S. Hamouda, S. Hall, T. L.

Naps and C. A. Shaffer, "Design and architecture of an interactive

eTextbook–The OpenDSA system," Science of Computer

Programming, vol. 88, pp. 22-40, 2014.

[17] V. Karavirta and C. A. Shaffer, "JSAV: the JavaScript algorithm

visualization library," in The 18th ACM conference on Innovation

and technology in computer science education, New York, 2013.

[18] T. Rajala, M.-J. Laakso, E. Kaila and T. Salakoski, "Effectiveness of

Program Visualization: A case study with the ViLLE Tool," Journal

of Information Technology Education: Innovation in Practice, vol.

7, 2008.

[19] T. L. Naps, "JHAVE: Supporting algorithm visualization," IEEE on

Computer Graphics and Applications, vol. 25, no. 5, pp. 49-55,

2005.

