Akreditasi LIPI Nomor : 452/D/2010 Tanggal 6 Mei 2010

PREPARATION AND CHARACTERISATION OF LITHIUM ARGYRODITE ELECTROLYTES

R. Prasada Rao and S. Adams

Department of Materials Science and Engineering-National University of Singapore
Singapore 117574
e-mail: mserpr@nus.edu.sg

ABSTRACT

PREPARATION AND CHARACTERISATION OF LITHIUM ARGYRODITE ELECTROLYTES.

Rechargeable All Solid state Lithium Li Ion Batteries (AS-LIBs) are attractive power sources for electrochemical applications, due to their potentiality in improving safety and stability over conventional batteries with liquid electrolytes. AS-LIBs require a Li Fast Ion Conductor (FIC) as the solid electrolyte. Finding a solid electrolyte with high ionic conductivity and compatibility with other battery components is key to building high performance AS-LIBs. There have been numerous studies e.g. on lithium rich sulfide glasses as solid electrolytes. However, the limited current density remains a major obstacle in developing competitive batteries based on the known solid electrolytes. Here we prepare argyrodite type $\text{Li}_6\text{PS}_5\text{X}$ (X = Cl and Br) using mechanical milling followed by annealing. XRD characterization reveals the formation and growth of $\text{Li}_6\text{PS}_5\text{X}$ crystals in samples under varying annealing conditions. For $\text{Li}_6\text{PS}_5\text{Cl}$ an ionic conductivity of the order of 10^{-3} S.cm⁻¹ is reached at room temperature, which is close to the Li mobility in conventional liquid electrolytes (LiPF₆ in various carbonates) and well suitable for AS-LIBs.

Key words: Argyrodite, Solid electrolyte, Ionic conductivity, Bond valence

ABSTRAK

PREPARASI DAN KARAKTERISASI ELEKTROLIT LITHIUM ARGYRODITE. Baterai isi ulang All Solid state Lithium Li Ion Batteries (AS-LIBs) adalah sumber daya yang menarik untuk aplikasi elektrokimia karena potensinya untuk meningkatkan keselamatan dan stabilitas dibanding baterai biasa dengan elektrolit cair. AS-LIBs memerlukan Li Fast Ion Conductor (FIC) sebagai elektrolit padat. Upaya mendapatkan elektrolit padat dengan konduktivitas ionik dan kompatibilitas yang baik dengan komponen baterai lainnya merupakan kunci untuk membangun kinerja tinggi AS-LIBs. Dalam hal ini telah ada beberapa penelitian, seperti gelas sulfida kaya lithium sebagai elektrolit padat. Tetapi, keterbatasan rapat arus masih menjadi hambatan utama dalam pengembangan baterai berbasis eletrolit padat yang kompetitif. Pada penelitian ini dikembangkan Li₆PS₅X (X = Cl dan Br) jenis argyrodite menggunakan milling mekanik diikuti dengan annealing. Karakterisasi dengan XRD menunjukkan pembentukan dan pertumbuhan kristal Li₆PS₅X dalam sampel pada berbagai kondisi annealing. Konduktivitas ionik untuk Li₆PS₅Cl dalam orde 10⁻³ S.cm⁻¹ tercapai pada suhu kamar, yang mendekati mobilitas Li dalam elektrolit cair biasa (LiPF₆ dalam variasi karbonat) dan sangat cocok untuk AS-LIBs.

Kata kunci: Argyrodite, Elektrolit padat, Konduktifitas ionik, Valensi ikatan

INTRODUCTION

Rechargeable All Solid state Lithium or Li Ion Batteries (AS-LIBs) are attractive power sources for applications like smart credit cards and medical implants. They need a Li Fast Ion Conductor (FIC) as the solid electrolyte. The purpose is to improve safety and stability over conventional batteries with liquid electrolyte. Finding a solid electrolyte with high ionic conductivity is the key to building practical solid-state batteries. There have been numerous developments on materials such as lithium rich sulfide glasses as solid electrolyte. However, limited

current density remains a major obstacle in these electrolyte systems.

Argyrodites form a class of chalcogenide structures related to the mineral Ag₈GeS₆, which includes various fast Ag⁺ or Cu⁺ ion conductors such as A₇PS₅X (A=Ag⁺, Cu⁺) [1]. Synthesize the analogue cubic Li⁺ argyrodytes with formula Li₆PS₅X (X = Cl, Br and I) and Li₇PS₆ [2]. ⁷Li-NMR relaxation and impedance experiments find an intrinsic local lithium mobility of the Li argyrodite crystals as high as 10⁻² - 10⁻³ S.cm⁻¹ at room temperature close to the mobility in liquid electrolytes

comprising of LiPF₆ salt in various carbonates. With such high lithium mobilities, these materials may be ideal for use as solid electrolytes in lithium ion batteries. Here we prepare the argyrodite-type Li₆PS₅X (X = Cl, Br) using mechanical milling followed by annealing of the samples. X-Ray Diffractometry (XRD), Scanning Electron Microscope (SEM) and impedance measurements of the samples are reported here.

Ion transport studies for the silver and copper thiophosphates can be based on the detailed available anharmonic structure refinements, no comparably detailed studies are so far available for the Lithium compounds due to the low scattering power of Li and phase transitions preventing low-temperature single crystal studies. Therefore we analyze the ion transport pathways in the Li₆PS₅X (X= Cl and Br) phases using optimized empirical force fields in combination with the bond valence analysis of energy landscapes for the mobile Li⁺.

EXPERIMENTAL METHOD

 Li_6PS_5X (X=Cl and Br) samples were prepared by high energy mechanical milling using Agate (45 mL pot and 15 number of 10 mm ø ball) pot and balls; Li_2S , P_2S_5 and LiX (X=Cl and Br) crystalline powders were used as starting materials. The samples were ground for 24 hours or 80 hours followed by annealing at 550 °C for 5 hours. Samples were pressed into 10 mm diameter pellets of about 1.5 mm thick for annealing the samples. All the procedure was done under Ar atmosphere.

The annealed samples were characterized by X-ray powder diffractometry using Cu K_{α} radiation (PANalytical X'Pert PRO) equipped with a fast linear detector (X2 Celerator). XRD data were collected in the 20° range $8\text{-}100^{\circ}$ with a nominal scan rate of 120s step⁻¹ and a step size of 0.016° at room temperature. Rietveld refinements of XRD powder patterns were performed with the Generalized Structure Analysis System (GSAS) and along with the graphical user interface EXGUI [3,4].

Structure data from published single crystal X-Ray data measurements [2]. The structures were thus refined based on the same set of 49 refinable parameters 12 background variables of shifted Chebyshev function, 7 profile variables, 1 cell parameter, 24 refinable atomic coordinates, 3 atomic displacement parameters, 1 preferential orientation parameter and an overall scale factor.

Ionic conductivity measurements of ball milled and final samples at different temperatures were carried out by impedance spectroscopy (Schlumberger Solartron SI1260) in the frequency range of 1 Hz to 1MHz. Stainless steel plates were used as electrodes. At each temperature the samples were kept for 20 minutes for thermal equilibration. The bulk resistance R_b was determined from fitting impedance data to Nyquist plots. The equivalent circuit consists of C_b , R_b and a Warburg element.

THEORY

Bond Valence Approach

Empirical relationships between bond length R and bond valence s are widely used in crystal chemistry to identify plausible equilibrium sites for an atom in a structure as sites where the BV sum of the atom matches its oxidation state.

$$s_{Li-X} = \exp\left[\left(\frac{R_0 - R}{b}\right)\right] \quad \dots \tag{1}$$

A systematic adjustment of BV parameters b to the bond softness, together with the inclusion of interactions beyond the first coordination shell permits more adequate estimates of non equilibrium site bond valences. The modeling of pathways for mobile Li+ as regions of low site energy E(Li) (or of low bond valence sum mismatch $|\Delta V(Li)|$) has been demonstrated to be a simple and reliable way of identifying transport pathways in local structure models, provided that the local structure model captures the essential structural features. While bond valences $s_{\text{Li-O}} = exp[(R_0 - R_{\text{Li-O}})/b]$ and hence the BV sum mismatch $|\Delta V|$ are mostly expressed in arbitrary valence units", they may - as we have shown recently -[5-11] also be linked to an absolute energy scale by expressing the bond valence as a Morse type interaction energy:

$$E = D_0 \left\{ \frac{(s - s_{\min})^2}{s_{\min}^2} - 1 \right\} = D_0 \left(s_{rel}^2 - 2s_{rel} \right) \dots (2)$$

Here, s_{rel} equals s/s_{min} and s_{min} represents the value of the bond valence for the equilibrium distance R_{min} , which is estimated from the bond valence parameter R_0 and typical coordination number NC of the cation (for details see [9]). Pathways for Li⁺ can then be modelled as regions in the structure, where the Li site energy defined as:

$$E(\text{Li}) = D_0(\text{Li} - S) \left[\sum_{i=1}^{N} \left(\frac{s_{\text{Li}-S} - s_{\text{min},\text{Li}-S}}{s_{\text{min},\text{Li}-S}} \right)^2 - N \right] + E_{\text{Coulomb}}(\text{Li} - A) ... (4)$$

remains sufficiently low. While the attractive Coulomb interactions are integrated into the Morse interaction, repulsive cation-cation interactions of Li⁺ ions with other cation types A have to be considered separately, as they also affect the Li site energy. Regions of low E(Li) are then considered as regions that a mobile Li⁺ can reach with an activation energy related to the value of E(Li). It is assumed that dc conduction requires continuous pathways that span the unit cell in at least one direction. These pathways are visualized as regions enclosed by isosurfaces of constant E(Li) based on a grid of E(Li) values with a resolution < 0.1 Å covering the unit cell. The threshold value of E(Li) for which the E(Li) isosurfaces form a continuous migration pathway

(that includes both occupied and vacant Li sites), permits a rough estimate of the activation energy for the Li⁺ ion transport process. As such an approach neglects relaxation, the assessment of the activation energy is based on an empirical correlation observed for a wide range of Lithium ion conductors.

RESULTS AND DISCUSSION

The XRD patterns of ball milled samples showed partial crystallinity with peaks belonging to the Li₂S, P₂S₅ and LiBr or LiCl phases. While for the samples that have been ball-milled for 24 hours, peaks of various phases are still rather prominent, peaks of most phases except Li₂S become very broad after 80 hours. After annealing both samples yield the respective argyrodite phases with comparable crystallinity. Thus preparation time for argyrodites could be drastically reduced when compared to the original synthesis recipe [2], where the preparation takes 7 days.

Figure 1 shows the Rietveld fit to the final Li₆PS₅Br system. The final samples of Li₆PS₅Cl and Li₆PS₅Br exhibit the high symmetry aristotype of the argyrodite structure in space group F-43m (see Figure 1). The lattice parameters of Li₆PS₅Cl and Li₆PS₅Br are 9.8509(4) Å and 9.9805(8) Å respectively. These values are in good agreement with the reported values. Both samples showed minor secondary phase of LiX hydrates.

SEM images of both samples showed the formation of about 100 nm nano crystals as shown in Figure 2 for Li₂PS₂Br. SEM of the ball milled sample before annealing showed the partially crystalline nature of the compound. Ionic conductivity of the ball milled samples were determined using Nyquist plots as shown in Figure 3 for Li₂PS₂Br at various temperatures. Temperature dependent ionic conductivity of both samples showed Arrhenius nature. Ball milled Li_PS_cCl and Li_PS_cBr samples have shown ionic conductivity 5.9 x 10⁻⁶ S.cm⁻¹ and 7.8 x 10⁻⁶ S.cm⁻¹ with activation energies 0.71 and 0.65 eV respectively. The ionic conductivities of final crystalline compounds are 1.9 x 10-3 S.cm-1 and 6.8 x 10-3 S.cm-1 respectively. Low temperature ionic conductivity studies to determine the activation energy of the crystalline compounds are in progress in our laboratory.

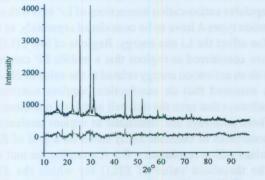


Figure 1. Rietveld refinement of crystalline Li, PS, Br

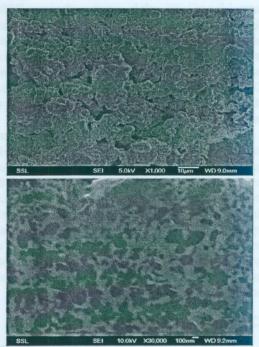


Figure 2. SEM image of ball milled and final crystalline Li_ePS₅Br

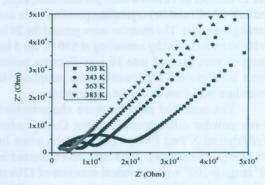


Figure 3. Nyquist plots of Li₆PS₅Br at various temperatures

Figure 4 compares Li⁺ ion migration pathways in the Li₂PS₂X argyrodite structures with X=Cl₂, Br and I. Roughly speaking, the three-dimensional pathway network for long range (dc) ion conduction in all Li₂PS₅X phases consist of interconnected low-energy local pathway cages. In detail however these cages and the way in which they are interconnected differs for the compounds with different halide ions. In the structure of Li_sPS_sCl structure (l.h.s. column in Figure 4) the sites of lowest energy agree with the experimentally refined half-occupied Li1 positions. The lowest energy short range pathway then interconnects 3 such partially occupied Li sites via 3 interstitial sites forming a pathway hexagon ($E_A = 0.18 \text{ eV}$). 4 such hexagons are then interconnected at a slightly higher energy threshold via a second interstitial site to form an extended pathway cage around the Cl position ($E_A = 0.22 \text{ eV}$) and the 3D long range pathway network is finally established by a direct connection in between the cages ($E_A = 0.35 \text{ eV}$).

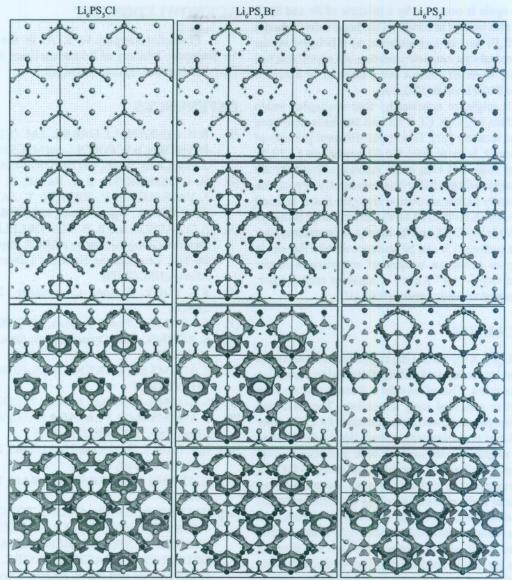


Figure 4. Li* migration pathways of Li₆PS₅X (X = Cl, Br and I; left to right) for different energy thresholds characterising equilibrium sites (1st row), first local Li* paths (2nd row), extended local Li* pathway cages (3nd row), and pathways for long range Li* migration. Note that pathways are different in detail (cf. text). •,+ Li, •P, •S, •Cl,Br•,I•.

For the case of Li₂PS₅I however, experimental studies suggest a more disordered Li distribution described in [2] by Li1-Li2-Li1 triplet sites. In our bond valence model the sites of lowest E(Li) accordingly imply a disordered Li distribution over the Li1 sites only. The lowest energy interconnection between sites then includes the Li2 site in between pairs of Li1 sites (0.09 eV), but the Li2 position appears not to be a local minimum of E(Li), which is also in line with the difference Fourier plot shown in ref [12]. Experimental NMR data find an even lower activation energy of 0.043 eV for unspecified local hops [2]. Six of these dumbbell-like local pathways (which correspond to the intercage pathways in Li₂PS₂I) then form a pathway cage around the S2 site (not as in the previous case around the halide ion) with $E_A = 0.15$ eV. The cages are finally interconnected via an interstitial site for $E_A = 0.33$ eV in remarkable

agreement with the experimental value 0.32 eV from low temperature impedance spectroscopy and 0.30 eV from MD simulations. MD simulations also suggest 0.14 eV for a localised motion [12].

The characteristics of Li⁺ pathways in Li₆PS₅Br appear to mix features of pathways in the X=Cl and X=I cases. Again, there is a clear disorder over Li1 sites (The experimental structure determination again suggests a Li1-Li2-Li1 triplet). The lowest energy local pathway interconnecting these sites is a hexagon of 3 Li1 and three interstitial sites as in Li₆PS₅Cl (E_A = 0.15 eV). The local pathway cage forms as in Li₆PS₅I around the S2 site (the site is effectively occupied by 84% S / 16 % Br according to [12]) for E_A = 0.25 eV, but only at a minutely lower energy than for the long range pathways (E_A=0.27 eV), which may be thought of as a combination of cages around S2 and around the halide site

(which again is occupied by a mixture of Br and S). It should also be kept in mind that the bond valence model of Li₆PS₅Br may be less accurate, as it is based on the experimental structure determination of a crystal that had a slightly lower Br content and a disorder of S and Br over the S2/Br2 and Br3/S3 sites.

It might be noteworthy that analogous oxide argyrodites Li₆PO₅X (X = Cl and Br) have also been reported recently [13]. Due to the different position of oxide ion O₂ in these from the S2 position in Li₆PS₅X, pathway cages and long range pathways found for the oxide argyrodites differ fundamentally. From the significantly higher activation energies found in bond valence models for local (0.4 eV) and long range pathways (0.57 eV) in Li₆PO₅Cl, and the absence of interstitial sites in these pathways it can be understood why the oxide analogues show an orders of magnitude lower conductivity (~ 10⁻⁹ S.cm⁻¹ at ambient temperature, experimental activation energy 0.66 eV).

CONCLUSION

Li, PS, X (X=Cl and Br) argyrodite structures were prepared by mechanical milling followed by annealing of the samples. This allows for a faster synthesis than the earlier reported long annealing. The obtained crystalline phase showed ionic conductivity of the order of 10⁻³ S.cm⁻¹ at ambient temperature. Bond valence based Li⁺ ion migration pathways for both compounds yield pathways with similarly low activation energies for long range transport (ca. 0.3 eV), despite the pronounced differences in the pathway topology for different halide ions. It could be clarified that the even lower activation energies reported from NMR studies refer to hops within extended local pathway cages that are not directly relevant for the dc conductivity. Due to the high ionic conductivity of the compounds at room temperature, these compounds are of high technological interest as one of the best solid electrolytes for high energy all solid state battery applications.

ACKNOWLEDGMENT

Financial support to S. A. in the frame of the Singapore Ministry of Education Grant MOE2009-T2-1-065 is gratefully acknowledged.

REFERENCES

- [1]. R.B. BEEKEN, J.J. GARBE, J.M. GILLIS, N.R. PETERSEN, B.W. PODOLL and M.R. STONEMAN, J. Phy. Chem. Solids, 66 (2005) 882-886
- [2]. H.-J. DEISEROTH, S.-T. KONG, H. ECKERT, J. VANNAHME, C. REINER, T. ZAIß and M. SCHLOSSER, Angew. Chem., 120 (2008) 767-770
- [3]. A.C. LARSON and R. B. VON DREELE, General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, (2000)
- [4]. B.J. TOBY, J. Appl. Crystallogr., 34 (2001) 210-213
- [5]. S. ADAMS, J. Power Sources, 159 (2000) 200
- [6]. S. ADAMS, Acta Crystallogr. B, Struct. Sci., 57 (2001)278
- [7]. S. ADAMS and J. SWENSON, Solid State Ionics, 175 (2004) 665
- [8]. S. ADAMS, Solid State Ionics, 177 (2006) 1625
- [9]. S. ADAMS and R. PRASADA RAO, Phys. Chem. Chem. Phys., 11 (2009) 3210-3216
- [10]. R. P. RAO, T. D. THO and S. ADAMS, Solid State Ionics, 181 (2010) 1-6
- [11]. S. ADAMS and R. PRASADA RAO, This issue, (2010)
- [12]. OLIVER PECHER, SHIAO-TONG KONG, THORSTEN GOEBEL, VERA NICKEL, KATJA WEICHERT, CHRISTOF REINER, HANS-JÖRG DEISEROTH, JOACHIM MAIER, FRANK HAARMANN and DIRK ZAHN, *Chem. Eur. J.*, DOI 10.1002/chem.201000501
- [13]. SHIAO-TONG KONG, HANS-JÖRG DEISEROTH, JOACHIM MAIER, VERA NICKEL, KATJA WEICHERT and CHRISTOF REINER, Z. Anorg. Allg. Chem., DOI 10.1002/ zaac.201000121, (2010)