AGENTS-BASED COMMODITY MARKET SIMULATION WITH JADE

Rina Refianti, Achmad Benny Mutiara, and Hendra Gunawan

Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma Jl. Margonda Raya No.100, Depok, 16424

E-mail: rina@staff.gunadarma.ac.id

Abstract

A market of potato commodity for industry scale usage is engaging several types of actors. They are farmers, middlemen, and industries. A multi-agent system has been built to simulate these actors into agent entities, based on manually given parameters within a simulation scenario file. Each type of agents has its own fuzzy logic representing actual actors' knowledge, to be used to interpreting values and take appropriated decision of it while on simulation. The system will simulate market activities with programmed behaviors then produce the results as spreadsheet and chart graph files. These results consist of each agent's yearly finance and commodity data. The system will also predict each of next value from these outputs.

Keywords: Agent, JADE, Java, fuzzy logic, Potato

Abstrak

Sebuah pasar komoditas kentang untuk penggunaan skala industri melibatkan beberapa jenis aktor. Mereka adalah petani, tengkulak, dan industri. Sebuah sistem multi-agent telah dibangun untuk mensimulasikan aktor ini menjadi entitas agen, berdasarkan parameter yang diberikan secara manual dalam file skenario simulasi. Setiap jenis agen memiliki logika fuzzy sendiri mewakili pengetahuan pelaku yang sebenarnya, yang akan digunakan untuk menafsirkan nilai-nilai dan mengambil keputusan yang disesuaikan pada saat simulasi. Sistem akan mensimulasikan kegiatan pasar dengan perilaku yang terprogram kemudian menampilkan hasil dalm bentuk spreadsheet dan file grafik chart. Hasil ini terdiri dari data tahunan keuangan dan komoditas masing-masing agen. Sistem ini juga akan memprediksi Setiap nilai berikutnya dari keluaran tersebut.

Kata kunci: Agent, JADE, Java, fuzzy logic, kentang

1. Introduction

In potato commodity market, industries and farmers, as end buyer and raw producer respectively, hold big role in market activities that can give impact to each other. Industries need the farmers to fulfill their raw commodity requirement for continuous production. For industries, their production is vital activities to gain profit. At other side, farmers need to keep producing and sell their harvest revenue to have income. However, both farmers and industries are not the only one "seller" and "buyer" in market. Middlemen hold those both two roles, positioning themselves a competitor to farmers and industries and gain profit from it.

In market competition, each actor's assets, knowledge, and behaviors can be different to others thus giving different measures on the same situation. A simulation system will help by simulating the market activities and the produce the data to see if their current conditions can give positive impact in achieving their goal.

Agent Oriented Programming (AOP) is one of the best approaches to declare actual actors as system entities, called agent, and simulate their actions [5]. AOP offers several advantages like message based communication, multi-behaviors support, life cycle management, and more [2]. The capability of agents can be improved by posing artificial intelligent backup to help them sense conditions of environment where they live and take appropriated actions regarding to it. Thus this type of agents are called intelligent agent [1]. Users have to supply actors' knowledge and scenario to the system. The system will be limited to give output data as it is, without any conclusion.

2. Methodology

The methodology that is used consists four phases in order [2]. Each phase has multiple steps inside them to be done in order too. The flow, phases, and steps of the methodology are illustrated in Fig 1.

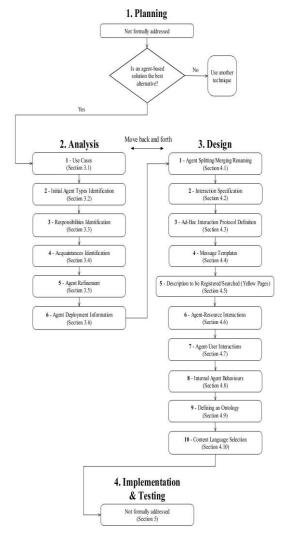


Fig 1. Methodology diagram [2].

This methodology is used corresponding to JADE (Java Agent Development) library which is used to built system's architecture. JADE is Java based library with ACL (Agent Communication Language) that is defined by FIPA (Foundation for Intelligent Physical Agent) [8]. In general, this ACL declares the messages per formative and service type "yellow paging" as basic way for agents to communicate.

The methodology serves as a guide for the system designer when developing a system. In general, a software development methodology may comprise of [2,3,4,6]:

- 1. A process, i.e. a sequence of phases and steps that guide the developer in building the system.
- 2. A set of heuristic rules that support the developer in making relevant choices.
- A number of artifacts, i.e. diagrams, schemas or documents representing in graphical or textual form one or more models of the system.
- 4. A suitable notation to be used in the artifacts.
- 5. A set of patterns that can be applied to solve common situations.
- 6. One or more tools that: automate, as much as possible, the phases and step specified in the process; force consistency between the models produced; highlight problems arising from incorrect design choices, when possible; generate code and documentation, etc.

The focus of the methodology is on the process and the artifacts that are produced. The described process covers the analysis phase and the design phase and is shown in Fig.1. The analysis phase is general in nature and independent of the adopted platform. Conversely, the design phase specifically assumes JADE as the implementation platform and focuses directly on the classes and concepts provided by JADE. Observing Fig.1, it can be seen that there is no strict boundary between the analysis and design phases. Moreover, the methodology is of an iterative nature, thus allowing the designer to move back and forth between the analysis and design phases and the steps therein.

At the end of the design phase, the developer should be able to progress straight to the implementation, which is where the actual coding occurs. In addition, most of this phase can probably be carried out by means of a proper tool which automates the implementation process. The planning stage, like implementation and testing, is not formally addressed in the methodology. However, for the sake of the methodology, a question is included (see Fig.1), which initially asks if the designer has made a rational decision on whether to use an agent-based solution. If the answer is yes, the designer moves on the analysis, while if the answer is no, the designer should seek an alternative solution.

3. Results and Discussion

3.1. Planning Phase

The system uses intelligent agent and Fuzzy logic is chosen as knowledge implementation since the actual actors may interpret some values into natural language. The fuzzy rules are written

as FCL (Fuzzy Control Language) script and applied with help of jFuzzyLogic library and its built-in fuzzy inference system. The required input is simulation scenario describing some parameters including FCL scripts' location in form of spreadsheet file. At start, system will ask user to select this file in order to run. Finally, each agent will produce their finance and commodity data at the end of simulation, both in form of spreadsheet files (tabular) and picture files (charts) by using jExcel and jFreeChart libraries.

3.2. Analysis Phase

The following Use case diagrams (Fig 2-4.) are showing relation between farmer-middlemen, farmer-industries, and middlemen-industries respectively.

Actual actors are represented by three kind of agents based on service they provide. Farmers, middlemen, and industries are "ProdusenAgent", "DistributorAgent", and "KonsumenAgent" agents respectively. Since the system needs to access the external resource scenario and FCL files, a transducer agent that not representing actual actors "MainAgent" is created. Fig. 5 shows relation between these agents kind. Agent's task can be seen in the Table I.

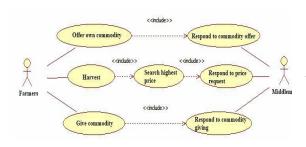


Fig 2. Use Case Diagram between Farmers and Middlemen

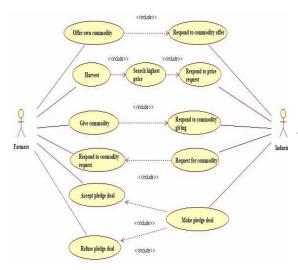
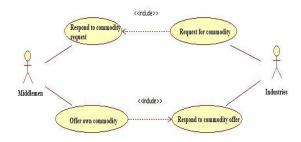


Fig 3. Use Case Diagram between Farmers and Industries



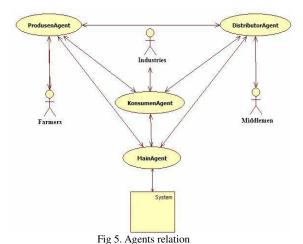

Fig 4. Use Case Diagram between Middlemen and Industries

TABLE I			
TASKS OF AGENTS			

TASKS OF AGENTS			
Agent Type	Tasks		
ProdusenAgent	Plant seed to field		
	Harvest		
	Respond to commodity request		
	Respond to pledge deal		
	Offer own commodity		
	Search highest price for commodity		
	Give harvest revenue to pledge dealer		
DistributorAgent	Sort commodity according to its standard		
	Respond to commodity offers		
	Respond to price request		
	Respond to commodity giving		
	Respond to commodity request		
	Offer own commodity		
KonsumenAgent	Perform monthly production		
	Sort commodity according to its standard		
	Respond to commodity offers		
	Respond to price request		
	Respond to commodity giving		
	Make pledge deal with ProdusenAgent		
	Request for commodity		
MainAgent	Load scenario file		
	Parse scenario's parameters		
	Do the dating count		
	Synchronize date to all active agents		

3.3. Design Phase

This phase offers chance to improve agents relation and interaction protocol in case FIPA doesn't cover the need. After specify agents relation, a interaction specification table including messages template is made as shown in Table II. All capitalized word refers to messages per formative.

To interact with user, the system has its own graphical user interface (GUI) showing finance and commodity charts. The GUI also shows some agent's actions log for debugging case and agent's current status as described in stock, money, and field values. User gives the scenario input through "MainAgent". The scenario file has two sections of parameters. The first section as described on Table III is used to determine how the simulation will work globally. A scenario file only has one of these sections.

The second section is used to give parameters to agent. This section can appear multiple times in one scenario file. The number of this section must be specified at the start of scenario, in other words first global parameter. The section is described in Table IV.

Each agent has some instance of JADE's Behavior class to describe an action of actual actor into algorithm. These behaviors can be executed in parallel or sequence depends on the need. The lists of behaviors representing actual actors' actions are mentioned by Table V.

Beside those behaviors, there are some which aren't representing actual actors' actions. These behaviors are related to agents' activities like calculate date and pool received message. They are listed in Table VI.

For ontology, the system will use object serialization as its protocol. To do this, some classes which will be content language like Price, Offer, and Seed have to implement Serializable interface. Instance of these classes will be set to ACLMessage before sent. ACLMessage itself is JADE's class that support performative and object use as content rather plain string.

TABLE II	
INTERACTION SPECIFICATION TABLE	

Agent	Inter- action	IP	Role	With	When	Tem- plate
Produ sen- Agent	Respo nd to comm odity reques t	Offer	R	D, K	Get REQU EST messag e	QUERY _IF
	Respo nd to pledge deal	Seed	R	K	Get PROPO SE messag e	ACCEP T_PROP OSAL, REJECT _PROPO SAL
	Offer own comm odity	Offer	I	D, K	Every month change and has stock	INFOR M, INFOR M_IF, AGREE, REFUSE
	Search highes t price for comm odity	Pledge	I	D, K	Harvest time	CFP
	Give harves t revenu e to pledge dealer	Pledge	Ι	D, K	Deal on given price	CONFIR M
Distri- butor- Agent	Respo nd to comm odity offers	Offer	R	P	Get INFOR M messag e	INFOR M_IF
	Respo nd to price reques t	Pledge	R	P	Get CFP messag e	REQUE ST_WH EN
	Respo nd to comm odity giving	Pledge	R	P	Get CONFI RM messag e	DISCON FIRM
	Respo nd to comm odity reques t	Offer	R	K	Get REQU EST messag e	QUERY _IF
	Offer own comm odity	Offer	I	K	Every month change and has stock	INFOR M, INFOR M_IF, AGREE, REFUSE

TABLE II
INTERACTION SPECIFICATION TABLE (CON'T)

INTERACTION SPECIFICATION TABLE (CON'T)						
Agent	Inter- action	IP	Role	With	When	Tem- plate
Konsu menAg ent	Respo nd to comm odity offer	Offer	R	P, D	Get INFOR M messag e	INFOR M_IF
	Respo nd to price reques t	Pledge	R	P	Get CFP messag e	REQUE ST_WH EN
	Respo nd to comm odity giving	Pledge	R	P	Get CONFI RM messag e	DISCON FIRM
	Make pledge deal with Produ senAg ent	Seed	I	P	Every month	PROPO SE, AGREE, REFUSE
	Reque st for comm odity	Offer	I	P, D	Every month when stock isn't enough to perform product ion	REQUE ST, AGREE, REFUSE
Main- Agent	Synchr onize date to all active	Detail edYea r	I	P, D, K	Every month	SUBSC RIBE

TABLE III GLOBAL PARAMETERS

agents

GLOBAL PARAMETERS				
Title	Description			
Specification block counts	Number of how many specification blocks that need to load			
Start year	Year of start			
Simulation duration (year)	How long the simulation			
Harvest ratio (Revenue/seed)	Number of harvest revenue (Kg) produced by 1 Kg seed			
Kg seed per Ha	Number of seed (Kg) planted in 1 Ha field			
Autonom (boolean)	Specify whether simulation will run automatically (1) or manually (0)			

TABLE IV AGENTS PARAMETERS

Name	Description	
GUI	Specify whether agent(s) has GUI (1) or not (0)	
Name	Name for agent(s)	
Role	Service type of agent(s): "produsen" (0), "distributor" (2), "konsumen" (3)	
Stock at start (kg)	Number of stock at start	
Money at start (Rp)	Number of money at start	
Seed at start (Kg)	Number of seed at start	
Minimum diameter (cm)	Lower value of diameter to pass selection	
Maximum diameter (cm)	Upper value of diameter to pass selection	
Production usage (kg)	Number of commodity needed to perform one time production	
Production income (Rp/kg)	Price for 1 Kg of processed commodity	
Market income (Rp/kg)	Price for 1 Kg of commodity when sold in traditional market	
Normal buy price (Rp/Kg)	Starting price when buying	
Normal pledge price (Rp/Kg)	Starting price when pledging	
Harvest failure chance (%)	Probability for harvest revenue number to randomly goes down	
Field (Ha)	Owned field	
Plant cost (Rp/Ha)	Cost to plant in 1 Ha field	
FCL path	File path relatively to system's location for FCL script	
Number of agents	Number of agent(s) using this specification	

TABLE V

	AGENT'S ACTOR REPRESENTING BEHAVIORS				
	Behavior's Name	Represented Action	Type of agent		
In	nformingBev	Offer own commodity	ProdusenAgent, DistributorAgent		
In	nformedBev	Respond to commodity offer	DistributorAgent, KonsumenAgent		
Q	ueryingBev	Request for commodity	KonsumenAgent		
Q	ueriedBev	Respond to commodity request	ProdusenAgent, DistributorAgent		
S	ellBev	Offer own commodity to respond request	ProdusenAgent, DistributorAgent		
P	ledgingBev	Make pledge deal	KonsumenAgent		
P	ledgedBev	Respond to pledge deal	ProdusenAgent		
G	livingBev	Give commodity	ProdusenAgent		
G	ivedBev	Respond to commodity giving	DistributorAgent, KonsumenAgent		
D	oivergingBev	Search highest price	ProdusenAgent		
D	vivergedBev	Respond to price request	DistributorAgent, KonsumenAgent		

TABLE VI.
AGENT'S SYSTEM RELATED BEHAVIORS

AGENT S SYSTEM RELATED BEHAVIORS			
Behavior's Name	Purpose	Type of agent	
CyclicBehavior	Used to pool received message and check its performative then call appropriate behavior to handle it.	DistributorAgent,	
DelayBehavior	Used to update date by increasing month count after some time. It'll be done as long as simulation running.	MainAgent	

3.4. Implementation and Testing Phase

A test is performed by using a dummy scenario and three kinds of knowledge bases, one for each type of agents. The scenario specifies six block specification for six agents (one block per agent) and put them in group of two. Therefore each type of agents has two agents instance and shares same knowledge base. The complete list of scenario can be seen in Table VII. This table uses scenario's dummy values for test (following [7]). Note that this table doesn't represent how to write them on the actual scenario file because there's difference in format. In order to optimize, several operation parameters for Java Virtual Machine (JVM) and JADE class loader are given as listed in Table VIII.

TABLE VII
COMPLETE LIST OF SCENARIO'S DUMMY

Parameters

Specification block counts

Normal buy price (Rp/Kg)

Values

6

Start year		2002
Simulation duration (year)		8
Harvest ratio (Revenue/seed)		2
Kg seed per Ha		1000
Autonom (boolean)		1
Group	Produ	sen
GUI	1	1
Name	P1	P2
Role	0	0
Stock at start (kg)	10	5
Money at start (Rp)	35000	100000
Seed at start (Kg)	20	34
Minimum diameter (cm)	0	0
Maximum diameter (cm)	0	0
Production usage (kg)	0	0
Production income (Rp/kg)	0	0
Market income (Rp/kg)	1000	1600

5300

5100

Normal pledge price (Rp/Kg)	0	0
Harvest failure chance (%)	0.45 0.5	
Field (Ha)	2.3	5.3
Plant cost (Rp/Ha)	50000	56400
FCL path	script/produsen.fcl	
Number of agents	1	1
Group	Distr	ributor
GUI	1	1
Name	D3	D4
Role	1	1
Stock at start (kg)	12	3
Money at start (Rp)	250000	37600
Seed at start (Kg)	0	0
Minimum diameter (cm)	4.9	3.9
Maximum diameter (cm)	6.3	5.7
Production usage (kg)	0	0
Production income (Rp/kg)	0	0
Market income (Rp/kg)	1200	1200
Normal buy price (Rp/Kg)	5700	5500
Normal pledge price (Rp/Kg)	0	0
Harvest failure chance (%)	0	0
Field (Ha)	0	0
Plant cost (Rp/Ha)	0	0
FCL path	script/distributor.fcl	
Number of agents	1 1	
Group	Konsumen	
GUI	1	1
Name	K5	K6
Role	2	2
Stock at start (kg)	500	830
Money at start (Rp)	400000	100000
	80	220
Seed at start (Kg)		
Minimum diameter (cm)	5.1	6.5
Maximum diameter (cm)	6	8.79
Production usage (kg)	150	125
Production income (Rp/kg)	3000	4100
Market income (Rp/kg)	1500	900
Normal buy price (Rp/Kg)	6000	6400
Normal pledge price (Rp/Kg)	6200	7500
Harvest failure chance (%)	0	0
Field (Ha)	0	0
		^
Plant cost (Rp/Ha)	0	0
Plant cost (Rp/Ha) FCL path Number of agents		nsumen.fcl

The results of simulation for two agents of "ProdusenAgent" are shown in figures 6-11. Fig.6 shows complete GUI of the agents and commodity charts at same time. The finance charts hidden inside the scroll area can be seen in Fig.7.

The results of simulation for two agents of "DistributorAgent" are shown both in commodity (Fig. 8) and in finance (Fig. 9) charts too. Finally, the output of "KonsumenAgent" agents are shown by Fig.10 and Fig.11.

TABLE VIII.
OPERATION PARAMETERS

Parameter	Description
-Xms512m	Allocate 512MB of RAM to JVM
-Xmx1024m	Allocate maximal 1024MB of RAM to JVM for additional usage
jade_core_messaging_Message Manager_maxqueuesize 50000000	Tell JADE to allocate 50MB of RAM as message queue

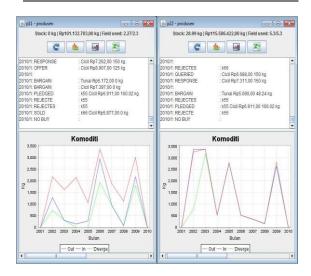


Fig 6. Commodity charts of "ProdusenAgent" agents

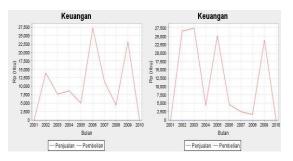


Fig 7. Finance charts of "ProdusenAgent" agents

For additional test, the system is also strained by simulating some numbers of agents instances (Table IX), including previous dummy test as test no. I. This is conducted to see how well the system's performance is. Table X shows specification of the testing machine where all test performed. Memory and processor (CPU) usages that are used during the test are listed by Table XI.

Fig 8. Commodity charts of "DistributorAgent" agents

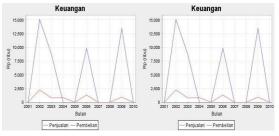


Fig 9. Finance charts of "DistributorAgent" agents

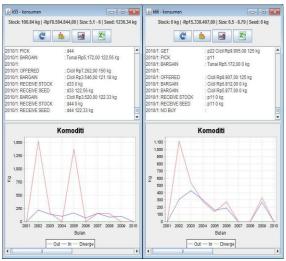


Fig 10. Commodity charts of "KonsumenAgent" agents

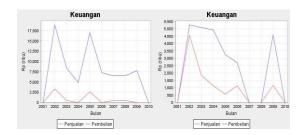


Fig 11. Finance charts of "KonsumenAgent" agents

TABLE IX.

NUMBER OF AGENT'S INSTANCES FOR STRAIN TEST

Test No.	Number of "Produsen- Agent" instance	Number of "Distributor- Agent" instance	Number of "Konsumen- Agent" instance	Total
I	2	2	2	6
II	7	7	7	21
III	12	12	12	36
IV	17	17	17	51
V	22	22	22	66

TABLE X.
TESTING MACHINE

Parameter	Description	
Operating System	Windows 7 Ultimate 32 bit	
CPU	AMD E-450 2 CPU @1.6GHz	
RAM	2048MB, 384MB Shared	
Storage	ST950032 SATA	
JDK/JRE version	Java 6 update 29	

TABLE XI. STRAIN TEST RESULTS

Test	Memor	y usage	CPU	Duration
No.	Min (Byte)	Max (Byte)	usage	
I	21.635.680	156.129.920	24,90%	5 m 46 s
II	19.316.896	159.294.232	98,30%	5 m 59 s
III	17.112.774	164.188.432	100,00%	5 m59 s
IV	24.967.448	591.403.360	100,00%	6 m 44 s
V	49.914.848	1.360.807.024	100,00%	19 m 54 s

4. Conclusions

The built system can run simulation based on given scenario then produce output each

agent's yearly finance and commodity data in form of spreadsheet and chart graph files. The system is also able to add additional value for spreadsheet files as prediction. The output is limited to raw data without any further analysis or conclusions, which are expected to come from appropriate market experts. Inheriting advantage of agent based application, system extension efforts like adding new agents or new behaviors is possible. For further research, some steps can be taken like implementing self adapting logic, performance optimization, and improvement for better quality of results.

References

- [1] F. Bellifemine, G. Cair, and D. Greenwood., Developing multi-agent systems with JADE, John Wiley and Sons, Ltd, West Sussex, England, 2007.
- [2] M. Nikraz, G. Caire, P. A. Bahri, A methodology for the Analysis and Design of Multi-Agent Systems using JADE, Telecom Italia Lab, Via Reiss Romoli, Turin, Italy 10148.
- [3] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, *JADE: A software framework for developing multi-agent applications. Lessons learned*, Information and Software Technology 50, 10-21 (2008).
- [4] F. Bellifemine, A. Poggi, G. Rimassa, Developing multi agent systems with a FIPAcompliant agent framework, In Software -Practice & Experience 31, 103–128 (2001).
- [5] L.S. Sterling and K. Taveter, The Art of Agent-Oriented Modeling, MIT Press, Cambridge, Massachusetts, 2009
- [6] M. Luck, R. Ashri, and M. D'Inverno, *Agent-Based Software Development*, Artech House Publishers, 2004.
- [7] A.M. Noor, Designing Behavior Model of Agents on Potetoes Supply Chain System, PhD-Thesis, Bogor Agricultural University, 2013.
- [8] Foundation for Intelligent Physical Agents (FIPA), see: http://www.fipa.org/.