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Abstract

The discontinuities on the structures or members are often to be encountered such as,
rivet and bolt holes as well as notches. These discontinuities are agents for stress raiser and it
can initiate cracks in the vicinity of holes or in the notch roots. It is well known that most of the
fatigue failure is caused by cracks growth initiated from the discontinuities. To reduce possibility
the initiation of crack in those stress raisers, the compressive residual stress, in general, is
imposed to the region in which the stress concentrates. In the present study, using expansion
hole technique carried out by aid of computer simulation, the effect of mandrel diameter and
thickness of the blank to the residual stress in the vicinity of the hole is investigated. The result
shows that the magnitude of the residual stress in the vicinity of the hole varies depending on
the magnitude of the expansion and the thickness of blank. In addition, in the certain distance
from the hole, the tensile residual stress develops, hence, it may endanger a component
because it causes the crack growth rate increase, as consequent, the life time of a component
is shorter.
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PENDAHULUAN

Latar Belakang

Sambungan tidak permanen atau
sambungan semi permanen, masing-masing,
yang sering digunakan adalah sambungan
dengan menggunakan kombinasi mur-baut
dan sambungan dengan menggunakan
paku keling (rivet). Untuk menggunakan
jenis sambungan ini, maka pada bagian
komponen yang akan disambung harus
dilubangi sedemikian rupa sehingga proses
penyambungan dapat dilakukan. Meskipun
jenis sambungan ini mempunyai keuntungan
untuk dibongkar dan dipasang relatif mudah,
akan tetapi dapat menimbulkan potensi
masalah baru, yaitu lubang dimana tempat
penyambungan mur-baut ataupun keling
dilakukan menimbulkan konsentrasi
tegangan, sehingga kekuatan material yang
dipilih untuk jenis sambungan ini harus
mempertimbangkan juga besar tegangan
yang terkonsentrasi di daerah sekitar lubang

[1].
Pada proses perencanaan suatu
struktur atau komponen, pada umumnya

konsentrasi tegangan yang terjadi pada
bagian komponen dihindari sebisa mungkin,
atau jika tidak dapat dihindari maka perlu
berbagai  pertimbangan  agar  supaya
komponen tersebut aman dan tidak
mengalami kegagalan [1]. Kegagalan yang
disebabkan oleh konsentrasi tegangan akibat
beban statik atau monotonik jarang terjadi,
karena cara untuk menganalisa tegangan
pada berbagai bentuk struktur sudah
berkembang dengan baik [2]. Akan tetapi, dari
hasil studi yang dilakukan oleh Nishida
menunjukkan bahwa 70% kasus kegagalan
pada komponen terjadi akibat beban berulang
atau dinamis [2]. Kegagalan pada beban
berulang tidak hanya dipengaruhi oleh besar
beban atau kondisi pembebanan tetapi juga
dipengaruhi oleh kondisi material [2-10].
Kegagalan yang terjadi dengan mekanisme ini
bahkan dapat mengakibatkan suatu material
mengalami fracture atau patah, dan ini
disebut dengan patah fatigue atau patah lelah.
Patahan jenis ini diawali dengan retak yang
terinisiasi pada daerah yang mengalami
deformasi plastis secara lokal, dan ini terjadi
pada daerah yang mempunyai konsentrasi
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tegangan. Jika besar konsentrasi tegangan
tersebut melebihi tegangan Iluluh bahan,
maka deformasi plastis akan terjadi [1].

Ada berbagai cara untuk
memperlambat perambatan retak. Stoping
hole, adalah cara yang relatif mudah dan
praktis, karena cara ini dapat dilakukan
tanpa membongkar komponen. Stoping hole
dilakukan dengan cara membuat lubang
disekitar ujung retak. Tujuannya adalah
untuk menurunkan konsentrasi tegangan
pada ujung retak [11]. Cara lain adalah
dengan teknik pengelasan (welding). Teknik
ini dilakukan dengan cara mengerinda
bagian yang retak dan selanjutnya dilakukan
pengelasan dengan memberi masukan
logam (filler). Cara ini adalah sesuai untuk
logam yang mempunyai mampu las yang
baik. Jika teknik pengelasan dilakukan pada
logam yang tidak mempunyai sifat mampu
las yang baik maka dapat merusak sifat
mekanik dari material, dan ini dapat
membahayakan integritas suatu struktur [1].
Perambatan retak dapat juga mengalami
perlambatan dan umur suatu komponen
menjadi lebih panjang, jika di depan ujung
retak terdapat tegangan sisa tekan [12-17].
Hal ini dapat dilakukan dengan melepas
atau membongkar komponen dan kemudian
diperlakukan sedemikan rupa sehingga
tegangan sisa tekan terbentuk di depan
ujung retak.

Cara-cara untuk memperlambat atau
bahkan menghentikan perambatan retak,
pada umumnya adalah dilakukan setelah
terjadi retak pada komponen [18]. Hal ini
kurang menguntungkan, karena harus
menghentikan operasi dan harus melepas
komponen dari struktur. Telah dibuktikan
dari berbagai penelitian bahwa tegangan
sisa kompresi pada struktur dapat
mencegah terjadinya inisiasi retak dan dapat
juga memperlambat perambatan retak [12-
17]. Salah satu cara untuk mencegah
inisiasi retak dan merambatnya retak dari
lubang mur-baut atau keling adalah dengan
cara yang dikenal dengan cold expansion
hole tehcnique [11]. Teknik ini dilakukan
dengan menekankan bola logam pada
permukaan lubang, dan penekanan
dilakukan sampai terjadi deformasi plastis,
sehingga menyebabkan terjadinya tegangan
sisa tekan disekitar permukaan lubang.

Kelemahan teknik ini adalah tegangan sisa
tekan terjadi pada daerah permukaan saja.
Telah dibuktikan bahwa kondisi tegangan sisa
di depan ujung retak pada daerah di bawah
permukaannya juga mempengaruhi
perambatan retak [16,17]. Oleh karena itu,
untuk memperbaiki teknik cold expansion hole,
maka dalam studi ini dengan mengganti bola
logam dengan pasak (pin) akan diteliti
bagaimana hubungan rasio diameter pasak
dan diameter lubang sambungan terhadap
distribusi tegangan sisa tekan disekitar logam
pada ketebalan plat yang Dbervariasi.
Digunakan pasak karena dapat melakukan
ekspansi  sepanjang lubang, sehingga
diharapkan tegangan sisa tekan yang
terbentuk  tidak terjadi pada daerah
permukaan saja.

METODE PENELITIAN

Pada studi ini difokuskan pada distribusi
tegangan sisa yang terjadi pada daerah
sekitar lubang untuk sambungan tidak
permanen, dalam hal ini Ilubang untuk
sambungan keling atau mur-baut. Metode
yang digunakan adalah simulasi numerik
dengan menggunakan bantuan software
berbasis metode elemen hingga. Simulasi
komputer ini dilakukan dengan menggunakan
prosedur sesuai dengan kode standar
software ANSYS.

Dalam simulasi ini model material yang
digunakan adalah identik dengan Almunium
komersial seri 1000, yang mempunyai
spesifikasi sebagai berikut : Density ( p )
2,705 g/cmz, Poisson’s Ratio ( u ) 0,33, Elastic
Modulus ( E ) 69 Gpa., Tensile Strength ( 0 )
110 Mpa., Yield Strength ( o, J103 MPa.,
Elongation (e ) 10 %, Hardness 30 HB.
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Gambar 1. berikut ini menggambarkan
secara skematik bagaimana proses cold
expansion hole dilakukan.
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Gambar 1. Proses cold expansion hold

Gambar 1. menunjukkan suatu lubang
sambungan dengan diameter Dy, pada suatu
plat dengan ketebalan t, diekspansi dengan
cara memberi tekanan pada lubang tersebut
dengan pasak berdiameter D,. Karena D, >
D, , maka pada keliling lubang akan
terdeformasi sehingga D, = D, maka
mengakibatkan terbentuk tegangan sisa
disekitar lubang. Dalam studi ini akan diteliti
distribusi tegangan sisa pada ketebalan plat
t yang berbeda dan besar D, vyang
bervariasi.

Hasil

Gambar 2 menunjukkan contoh contour
distribusi tegangan sisa (MPa.) pada plat
dengan ketebalan t = 1 dan telah diekspansi
dengan pasak dengan diameter Dp = 8.4
mm. Dari gambar tersebut menunjukan
bahwa terdapat tegangan sisa disekitar
lubang yang mana kondisinya bervariasi
tergantung dari jarak terhadap sisi lubang.
Karena umumnya plat pada suatu kontruksi
hanya menerima beban axial saja atau satu
arah, maka pada pada gambar tersebut
hanya menunjukkan untuk satu arah

orientasi saja, dalam hal ini arahnya paralel
dengan sumbu x.
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Gambar 2. Contoh distribusi tegangan sisa
pada sekitar lubang dengan t=1 mm dan
Dp=8.4 mm.

Gambar 3. adalah contoh contour
distribusi tegangan sisa untuk plat dengan
kebalan t = 1 mm setelah diekspansi dengan
pasak dengan diameter Dp = 8.2 mm.
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Gambar 3. Contoh distribusi tegangan sisa
pada sekitar lubang dengan t=1 mm dan
Dp=8.2 mm.

Gambar 2 dan 3 menunjukkan bahwa
pada daerah sekitar lubang setelah
diekspansi oleh pasak didominasi contour
dengan warna biru yang mengindikasikan
bahwa pada daerah tersebut masih
mengalami tegangan tekan meskipun tidak
terdapat tekanan dari pasak, maka hal ini
dapat dikatakan bahwa pada daerah tersebut
terdapat tegangan sisa tekan. Secara gradual
warana biru akan berubah menjadi merah
yang mengindikasikan tegangan dalam
kondisi tarik, jika jaraknya semakin jauh dari
sisi lubang.
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Gambar 4. adalah rangkuman dari
besar dan kondisi tegangan sisa disekitar
lubang setelah proses ekspansi dengan
besar diameter pasak Dp = 8.4 mm yang
dinyatakan dengan hubungan  besar
tegangan sisa dan jarak dari sisi lubang.
Dari gambar tersebut terlihat bahwa besar
tegangan sisa bervariasi tergantung jarak
dari sis lubang. Di samping itu juga kondisi
tegangan sisa juga berubah. Mulai dari sisi
lubang atau 0 mm sampai dengan sekitar 6
mm dari sisi lubang, kondisi tegangan sisa
adalah tekan yang ditunjukkan dengan
harga negatif, dan setelah jarak lebih besar
6 mm dari sisi lubang secara gradual
tegangan sisa akan berubah menjadi
tegangan sisa tarik yang ditunjukkan dengan
harga positif. Setelah mencapai titik
maksimumnya, besar tegangan sisa tarik
secara gradual menurun, meskipun
kondisinya masih tarik kecuali pada plat
dengan ketebalan t = 1 mm. Dari analisa
tegangan pada kasus ini diketahui bahwa
setelah proses ekspansi tidak hanya
tegangan sisa tekan saja yang terbentuk,
tetapi juga tegangan sisa tarik. Tegangan
sisa tarik dapat membahayakan kekuatan
dari suatu komponen pada suatu struktur.
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Jarak dari lubang, mm

Gambar 4. Hubungan jarak dari lubang dan
besar tegangan sisa. Dp = 8.4 mm

Gambar 5. adalah seperti halnya pada
Gbr.4, tetapi pada gambar ini untuk diameter
pada Dp = 8.2 mm. Dari gambar ini juga
diketahui bahwa transisi dari tegangan sisa
tekan menjadi tarik terjadi pada jarak sekitar
6 mm dari sisi lubang atau 0.6 dari diameter
lubang (0.6 D) sebelum diekspansi,
selanjutnya jarak tersebut disebut sebagai
titik transisi. Tidak seperti pada Dp = 8.4 mm,
pada kasus Dp =8.2 mm tegangan sisa tarik
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yang terbentuk setelah titik transisi hanya
terjadi pada t = 2 mm. Dari kedua fenomena
ini, maka dapat dikatakan bahwa setelah jarak
lebih dari 0.6D dapat terbentuk tegangan sisa
tarik. Ini harus mendapat perhatian dalam
rancang bangun suatu komponen yang
berhubungan dengan ekspansi lubang.

——t=3mm

—s—t=2mm

—4—t=1mm

T Ut T
0 2 4%6 8 101214 16 18 20 22 24 26 32

Tegangan sisa, MPa.

Jarak dari sisi lubang, mm

Gambar 5. Hubungan jarak dari lubang dan
besar tegangan sisa. Dp = 8.2 mm

Karena pada umumnya kontruksi plat
hanya mendapat satu arah pembebanan saja
atau ke arah tertentu saja, dalam hal ini
adalah paralel terhadap sumbu x, maka
pengaruh tegangan sisa yang terbentuk di
sekitar lubang setelah diekspansi dengan
pasak terhadap besar konsentrasi tegangan
yang disebabkan oleh tegangan aksial
dipelajari dalam penelitian ini. Gambar 6.
menunjukkan confour konsentrasi tegangan
pada daerah sekitar lubang yang disebabkan
oleh tegangan aksial searah sumbu x dan
diasumsikan besar tegangan aksial tersebut
adalah 85 MPa. atau sekitar sepertiga dari
kekuatan material plat. Dari gambar tersebut
terlihat konsentrasi tegangan terjadi tepat
pada sisi lubang yang diindikasikan dengan
warna merah, dan besar konsentrasi
tegangan yang terjadi adalah 3 kali lebih
besar dari besar tegangan aksialnya.

Gambar 6. Contour konsentrasi tegangan
pada daerah lubang. Unit: MPa.



Jurnal Rekayasa Mesin Vol.2, No. 3 Tahun 2011 : 218-226

ISSN 0216-468X

Tegangan, MPa.
- o NN W
s a 3 & 8
g 8 8 & 8

o
=]

0 T T T T T T l
0 5 10 15 20 25 30 35
Jarak dari tepi lubang, mm

Gambar 7. Variasi tegangan pada daerah
sekitar lubang. Beban aksial 85 MPa.

Gambar 7. adalah ringkasan besar
distribusi  konsentrasi tegangan sesuai
dengan jarak dari lubang. Dari gambar
tersebut diketahui bahwa besar tegangan
bervariasi. Pada daerah ditepi lubang (atau
pada jarak 0 mm ) tegangan akan
terkonsentrasi sekitar 3 kali dari tegangan
yang bekerja pada plat. Semakin jauh daru
tepi lubang, besar tegangan secara gradual

mempunyai besar yang sama dengan
tegangan kerja. Karena  konsentrasi
tegangan inilah maka, berbagai usaha
dilakukan untuk menurunkan konsentrasi
tegangan. Dalam studi ini, cara yang
digunakan adalah dengan memberikan

tegangan sisa disekitar lubang. Meskipun
cara ini sudah dikenalkan oleh peneliti lain,
namum umumnya mereka tidak menguji
bagaimana pengaruh ketebalan plat.

Selanjutnya untuk mengetahui
bagaimana pengaruh tegangan sisa
disekitar lubang terhadap konsentrasi
tegangan, maka untuk mengetahui hal
tersebut tiap kondisi tegangan sisa yang
dihasilkan dengan ekspansi
disuperposisikan dengan kondisi tegangan
disekitar lubang ketika diberi beban aksial
paralel sumbu x untuk masing-masing
kondisi, atau grafik pada Gambar 4 dan 5,
masing-masing disuperposisikan dengan
grafik pada Gambar 7.

Gambar 8. adalah hasil superposisi
Gambar 4 dan 7 yang mana ekspansi
menggunakan diameter pasak Dp = 8.4 mm.
Base adalah plat dengan lubang tanpa
mengalami ekspansi, sedangkan t = 1, 2
dan 3 mm adalah superposisi antara base
dan lubang yang telah diekspansi yang
mana terdapat tegangan sisa disekitar
lubang. Dari gambar ini terlihat walau diberi

beban aksial sebesar 85 MPa. pada plat
dengan lubang vyang telah diekspansi,
konsentrasi tegangan tarik tidak terjadi pada
daerah sekitar lubang, bahkan tegangan pada
sekitar lubang masih dalam kondisi tekan
pada jarak dibawah sekitar 4 mm untuk
semua ketebalan plat atau 0.4D. Pada daerah
ini, karena masih dalam kondisi tekan,
sehingga meskipun diberi beban aksial
kondisi tegangan masih minimum, akan tetapi
jika lebih dari 0.4D mempunyai tegangan tarik
bahkan dapat lebih besar dari kondisi base
jika lebih dari 0.6D, tentunya hal ini sangat
membahayakan struktur, kecuali pada t = 1
mm.
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100

0

2 6 8 10 12 14 16 18 20 22 24 26 28 30 32
-100
-200

-300

Superposisi, MPa.

Jarak dari lubang, mm

Gambar 8. Hasil superposisi Gbr.4 dan 7

Untuk superposisi dengan Dp = 8.2
ditunjukkan pada Gambar 9. Dari gambar ini
juga diketahui, bahwa transisi tegangan sisa
tekan menjadi tarik juga terjadi pada sekitar
0.4D. Dari sini juga diketahui bahwa hanya
pada t = 2 mm , setelah sekitar 0.6D
mempunyai tegangan yany lebih tinggi
daripada base-nya.
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Gambar 9. Hasil superposisi Gbr.5 dan 7

Dari Gambar 8 dan 9 dapat kita ketahui
bahwa metode ekspansi lubang untuk
menimbulkan tegangan sisa tekan disekitar
lubang ternyata mempunyai efek lain yaitu
berupa tegangan sisi tarik, terutama setelah
jarak dari lubang lebih besar dari 0.6D..
Sehingga jika diberi beban, maka pada
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daerah tersebut dalam kondisi dibawah
tegangan lebih besar daripada lubang tanpa
ekspansi atau tanpa tegangan sisa (base).
Meskipun demikian pada jarak kurang dari
0.4D dari sisi lubang masih dalam kondis
tekan. Hal ini tentunya dapat meningkatkan
kekuatan suatu komponen, karena kondisi
ini mempersulit terjadinya inisiasi retak,
terutama yang disebabkan oleh beban
dinamis (fatigue).

Gambar 10. menunjukkan hubungan
antara tebal plat dan tegangan sisa tekan
minimum untuk masing-masing diameter
pasak setelah disuperposisi. Garis kontinyu
adalah garis dugaan atau harapan yang
menunjukkan hubungan pengaruh ketebalan
plat terhadap tegangan sisa tekan minimum.
Dari gambar ini dapat diketahui bahwa
besar tegangan sisa tekan yang terbentuk
pada daerah sekitar lubang tidak berbanding
lurus dengan tebal plat. Walaupun masih
dalam kondisi tekan pada kasus di studi ini,
tetapi hasil ini memberikan petunjuk bahwa
metode ekspansi pada lubang harus
memperhatikan parameter-parameter
seperti, ketebalan plat dan besar ekspansi.

—+—Dp=82
-100 - —=Dp=84
-120 T T T T T T |
140 ¢ 0.5 1 1.5 2 25 3 3.5

-160 -
-180 -
-200 -
-220 -
-240 -
-260 -

tegangan tekan, MPa.

t, mm

Gambar 10. Hubungan antara tebal plat, t
dan tegangan sisa tekan minimum untuk
masing-masing diameter pasak, Dp.

Pembahasan

Untuk mengetahui penyebab distribusi
tegangan sisa disekitar lubang yang telah
diekspansi, maka Gambar 11. menunjukkan
contoh contour distribusi regangan plastis
pada sekitar lubang dengan Dp = 8.4 mm.
Dari gambar ini diketahui bahwa regangan
plastis terjadi pada daerah sebagian kecil
disekeliling lubang, sedangkan pada
umumnya pada daerah lain didominasi
warna biru yang mengindikasikan bahwa
regangan plastis tidak terjadi.
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c.) t=3mm
Gambar 11. contoh contour distribusi
regangan plastis, Dp = 8.4 mm

Selanjutnya pada Gambar 12. adalah
contoh contour regangan plastis pada daerah
sekitar lubang untuk Dp = 8.2 mm. Dari sini
terlihat bahwa regangan plastisk juga terjadi
sama seperti pada kondisi ekspansi dengan
pasak Dp = 8.4 mm.
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c). t=3mm
Gambar 12. Contoh contour distribusi
regangan plastis, Dp = 8.2 mm

Untuk mengetahui distribusi regangan
plastis pada masing-masing kondisi maka
Gambar 13. menunjukkan rangkuman
distribusi regangan tersebut untuk Dp = 8.4
mm . Dari gambar ini dapat diketahui bahwa

setelah jarak mencapai lebih besar daripada 4
mm dari sisi lubang atau 0.4D, regangan
plastis tidak terjadi. Dari sini juga
menunjukkan  bahwa regangan plastis
terbesar terjadi pada plat dengan ketebalan t
= 1 mm, hal inilah yang menyebabkan
tegangan sisa tekan terjadi pada t = 1 mm
seperti, dan selanjutnya berturut-turut diikuti
oleh ketebalan 2 dan 3 mm. Deformasi plastis
inilah yang menyebabkan tegangan sisa
tekan yang terjadi pada jarak kurang dari 0.4D
besarnya melebihi tegangan yeild-nya yang
mana mempunyai tegangan yeild sebesar 260
MPa. Selanjutnya tegangan sisa tekan tarik
yang terjadi pada jarak lebih besar daripada
0.4D penyebabnya adalah regangan elastis,
hal ini diindikasikan bahwa regangan plastis
pada daerah tersebut adalah nol, hal ini
disebabkan adanya kontraksi di daerah plastis
( kurang dari 0.4D).
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—&—t=3mm

o
=3
&

Regangan plastis
o o
o o
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-0.02 -

Jarak dari tepi lubang, mm

Gambar 13. Distribusi regangan plastis pada
kasus Dp = 8.4 mm

——t=1mm

Regangan Plastis

jarak dari tepi lubang, mm

Gambar 14. Distribusi regangan plastis pada
kasus Dp = 8.2 mm

Gambar 14. menunjukkan regangan
plastis sekitar lubang untuk Dp =8.2 mm. Dari
gambar tersebut menunjukkan hal yang sama,
yang mana regangan plastik terbesar terjadi

224



Jurnal Rekayasa Mesin Vol.2, No. 3 Tahun 2011 : 218-226

ISSN 0216-468X

pada t = 1 mm. Dari Gambar 13 dan 14
menunjukkan bahwa tegangan sisa yang
terjadi setelah jarak lebih besar dari 0.4D
adalah tegangan sisa tarik elastis, terutama
pada t=2 dan 3 mm.

KESIMPULAN

Dari hasil simulasi diketahui bahwa:

1. Besar tegangan sisa tekan disekitar sisi
lubang adalah tergantung dari ketebalan
dan diameter pasak yang digunakan
unruk mengekspansi lubang.

2. Tegangan sisa tekan terjadi pada
sekeliling lubang dalam daerah kurang
dari 0.4D ( diameter lubang) dari sisi
lubang. Jika lebih dari 0.4D, tegangan
sisa berubah menjadi tegangan sisa tarik,
terutama pada t=2 dan 3 mm.

3. Tegangan sisa tekan terjadi karena pada
daerah sekitar lubang, atau kurang dari
0.4D dari sisi lubang mengalami
deformasi plastis.

4. Tegangan sisa tarik yang terjadi pada
daerah lebih dari 0.4D disebabkan
karena adanya kontraksi pada daerah
plastis. Tegangan sisa tarik masih dalam
daerah elastis, hal ini diindikasikan
dengan tidak adanya regangan plastis
pada daerah tersebut.
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