MENANGKAL RADIKAL BEBAS
DENGAN ANTI-OXIDAN

Kuntum Khaira

Program Studi Tadris Matematika STAIN Batusangkar
Jl. Sudirman No. 137 Kuburajo Lima Kaun Batusangkar, Sumatera Barat 27213

ABSTRAK

This article aims at understanding free radical and how antioxidant can neutralize it. This reactive and unstable chemistry molecules could destruct cell. Free radical could be formed automatically by respiration result or generate from external factor like air pollution, cigarette smoke, emission of vehicle or access of UV light. To stop free radical, it must be concerned seriously that the supply of antioxidant in our body is sufficient. Endogenous antioxidant must be added by exogenous antioxidant to make it react with free radical to produce stable molecules.

Key words: free radical, antioxidant

PENDAHULUAN

Radikal Bebas dan Bahayanya

Senyawa radikal bebas merupakan salah satu faktor penyebab kerusakan DNA di samping penyebab lain seperti virus. Bila kerusakan tersebut terjadi, maka dapat diperbaiki oleh sistem perbaikan DNA. Namun, bila sudah menyebabkan rantai DNA terpusat di berbagai tempat, kerusakan ini tidak dapat diperbaiki lagi sehingga pembelahan sel akan terganggu. Bahkan terjadi perubahan abnormal yang mengenai gen tertentu dalam

Sumber Pemicu Radikal Bebas

Sumber radikal bebas ada yang bersifat internal yaitu dari dalam tubuh dan ada yang bersifat eksternal dari luar tubuh.

1. Radikal bebas internal

Radikal bebas internal berasal dari oksigen yang kitahirup. Oksigen yang biasa kitahirup merupakan penopang utama kehidupan karena menghasilkan banyak energi namun hasil samping dari reaksi pembentukan energi tersebut akan menghasilkan Reactive Oxygen Species (ROS).

Metabolisme aerobik yang merupakan proses penting dalam kehidupan organisme selalu diikuti oleh terbentuknya radikal bebas. Radikal bebas terbentuk saat proses sintesis energi oleh mitokondria atau proses detoksifikasi yang melibatkan enzim sitokrom P450 di hati. Seperti diketahui proses metabolisme terjadi karena teroksidasinya zat-zat makanan yang dikonversi menjadi senyawa pengikat energi (adenosin triphosphat) dengan bantuan oksigen. Dalam proses oksidasi itu terbentuk juga radikal bebas (ROS), yaitu anion superoksida dan hidroksil radikal (Lehninger, 1982:165).

2. Radikal bebas Eksternal

Sumber radikal bebas eksternal dapat berasal dari : polusi udara, alkohol, rokok, radiasi sinar ultra violet. Obat-obatan tertentu seperti anestesi, pestisida, Sinar X dan kemoterapi.

Minyak goreng yang dipakai berkali-kali sampai berwarna coklat kehitaman dan berbau tengik, dapat menjadi penyebab timbullah radikal bebas pada makanan yang digoreng. Minyak goreng yang sudah rusa tersebut tidak layak dipakai lagi karena dapat melepaskan senyawa peroksida dan epoksida yang bersifat karsinogenik (Ketaren, 2005:184). Zat pengawet makanan seperti formal-dehid/formalin pada bawang atau tahu, zat warna tekstil seperti methanol yellow pada kerupuk, serta rhodamin pada sirup, ternyata dapat merangsang terbentuknya radikal bebas (Nadjus, 2007:34)

Manfaat Anti Oksidan

Supaya radikal bebas tidak merajalela, tubuh secara spontan akan memproduksi zat anti oksidan. Sofia (2005; 10) mendefinisikan antioksidan sebagai inhibitor yang bekerja menghambat oksidasi dengan cara bereaksi dengan radikal bebas reaktif membentuk radikal bebas tak reaktif yang relatif stabil sehingga dapat melindungi sel dari efek berbahaya radikal bebas oksigen reaktif.
Cara Kerja Antioksidan

Berbeda halnya bila terdapat antioksidan. Radikal bebas akan segera bereaksi dengan antioksidan membentuk molekul yang stabil dan tidak berbahaya. Reaksi pun berhenti sampai disini.

Reaksi tanpa adanya antioksidan

\[
\begin{align*}
\text{Reaktan} & \rightarrow \text{Produk} + \cdot OH \\
\cdot OH + (\text{DNA, protein, lipid}) & \rightarrow \\
\text{Produk} + \text{Radikal bebas yang lain}
\end{align*}
\]

Radikal bebas yang lain akan memulai reaksi yang sama dengan molekul yang ada di sekitarnya.

Reaksi dengan adanya antioksidan

\[
\begin{align*}
\text{Reaktan} & \rightarrow \text{Produk} + \cdot OH \\
\cdot OH + \text{antioksidan} & \rightarrow \\
\text{Produk yang stabil}
\end{align*}
\]

Antioksidan cenderung bereaksi dengan radikal bebas terlebih dahulu dibandingkan dengan molekul yang lain karena antioksidan bersifat sangat mudah teroksidasi atau bersifat reduktor. Jadi keefektifan antioksidan bergantung dari seberapa kuat daya oksidasi nya dibanding dengan molekul yang lain. Semakin mudah teroksidasi maka semakin efektif antioksidan tersebut.

Jenis Anti Oksidan

Antioksidan ada 2 macam, yaitu antioksidan endogen yang diproduksi oleh tubuh sendiri dan antioksidan eksogen yang mempak antioksidan asupan dari luar tubuh.

Antioksidan yang diproduksi tubuh terdiri atas 3 enzim yaitu, superoksid dismutase (SOD), glutatiaon peroksidae (GSH Px), katalase, serta nonenzymin, yaitu senyawa protein kecil glutatiaon (Murray, 2003:124). SOD berperan dalam melawan radikal bebas pada mitokondria, sitoplasma dan bakteri aerob dengan mengurangi bentuk radikal bebas superoksid. SOD murni berupa peptida ergotina yang disebut agen anti peradangan. Antioksidan glutation peroksidae bekerja dengan cara menggerakkkan \(H_2O_2\) dan lipid peroksid dibantu dengan ion logam-logam transisi.

Antioksidan Alami

Dari tabel 1 diketahui bahwa banyak sekali tumbuhan yang kita konsumsi tiap harinya mengandung antioksidan. Senyawa antioksidan tersebut tersebar pada berbagai bagian tumbuhan seperti akar, batang, kulit, ranting, daun,bunga, buah, dan biji. Antioksidan alami ini berfungsi sebagai reduktor, peneakan oksigen singlet, peneakan oksigen singlet, pemangkak radikal bebas, dan sebagai penghela logam. Secara kimia antioksidan alami yang terdapat dalam tumbuh-tumbuhan ini terutama berasal dari golongan senyawa turunan fenol seperti flavonoid, turunan senyawa asam hidroksiamat, kumanin, tokoferol dan asam organik.
Tabel 1. Tanaman Potensial Yang Mengandung Antioksidan (Hernani, 2006; 74)

<table>
<thead>
<tr>
<th>Tanaman</th>
<th>Jenis yang Berkhasiat Antioksidan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sayur-sayuran</td>
<td>Brokoli, Kubis, Lobak, Wortel, Tomat, Bayam, Cabe, Buncis, Pare, Leunca, Jagung, Kangkung, Takokak, Mentimun</td>
</tr>
<tr>
<td>Buah-buahan</td>
<td>Anggur, Alpukat, Jeruk, Kiwi, Semangka, Markisa, Apel, Belimbing, Pepaya, Kelapa</td>
</tr>
<tr>
<td>Rempah</td>
<td>Jahe, Temulawak, Kunyit, Lengkuas, Temunangga, Temuputih, Kencur, Kapulaga, Bangle, Temugiring, Lada, Cengkeh, Pala, Asam Jawa, Asam Kandis</td>
</tr>
<tr>
<td>Tanaman lain</td>
<td>Teh, Ubi Jalar, Kedelai, Kentang, Keluwig, Labu Kuning, Pete Cina</td>
</tr>
</tbody>
</table>

Stres Oksidatif

Sebenarnya radikal bebas penting artinya bagi kesehatan dan fungsi tubuh yang normal dalam memerangi peradangan, membunuh bakteri dan mengendalikan tonus otot polos pembuluh darah dan organ-organ dalam tubuh kita. Namun bila dihasilkan melebihi batas kemampuan proteksi anti oksidan seluler maka radikal bebas akan berbalik menyerang sel itu sendiri (Sauriasari, 2006).

Ketidakseimbangan antara radikal bebas dan anti oksidan menyebabkan keadaan stres oksidatif yang mengakibatkan kerusakan sel, jaringan hingga organ tubuh. Langkah tepat untuk mengurangi stres oksidatif adalah mengurangi paparan radikal bebas dan mengoptimalkan pertahanan tubuh melalui aktivitas anti oksidan.

Selain konsumsi anti oksidan ada beberapa kebiasaan yang disarankan yang dapat membantu mengurangi radikal bebas, diantaranya adalah (Slaga dan Keuneke, 2005:95):

4. Hindari makanan yang di awetkan. Nitrosamine juga dapat terbentuk saat nitrit (pengawet makanan) di konsumsi bersama makanan yang mengandung amina atau obat-obatan
tertentu dalam lingkungan perut yang asam.

5. Lindungi rumah dari udara yang terpolusi. Kualitas udara dalam ruangan mempengaruhi kita setiap harinya dan sering kita abaikan. Sangat penting untuk menyediakan ventilasi yang baik guna kelancaran sirkulasi udara.

KESIMPULAN

Tubuh manusia secara terus menerus memproduksi radikal bebas sebagai produk samping dari proses metabolisme normal tubuh. Dalam keadaan normal pembentukan radikal bebas akan dihambat oleh pembentukan anti-oksidan sehingga terjadi keseimbangan antara radikal bebas dan anti oksidan. Tetapi polusi, radiasi ultra violet, rokok, diet tidak sehat, makanan berlemak tinggi, bahkan aditif makanan dan faktor-faktor lainnya tanpa disadari masuk kedalam tubuh sehingga menyebabkan laju peningkatan produksi radikal bebas semakin cepat.

Kelebihan produksi radikal bebas dan kurangnya anti oksidan merupakan dua kondisi umum pemieu stres oksidatif. Keadaan stres oksidatif akan membawa pada kerusakan oksidatif mulai dari tingkat sel, jaringan hingga ke organ tubuh yang menyebabkan terjadinya proses penyakit dan munculnya penyakit.

Langkah yang paling tepat untuk mengurangi stres oksidatif adalah dengan mengurangi paparan terhadap radikal bebas dan mengoptimalkan pertahanan tubuh dengan memperbanyak anti oksidan. Memang tidak ada lingkungan yang bebas-lebas bebas dari radikal bebas. Namun dengan meminimalisasi paparan radikal bebas, memperbanyak asupan anti oksidan kita dapat mengurahkan akar hidup bisa berjalan dengan lebih berkualitas.

DAFTAR KEPUSTAKAAN

