Jurnal

Rekayasa Elekitrika

VOLUME 10 NOMOR 3 APRIL 2013

A PostgreSQL/PostGIS Implementation for the Sightseeing Tour Planning 115-119
Problem

Ardiansyah dan Ruslan Rainis

Banda Aceh, ISSN. 1412-4785

JRE | Vol.10 | No.3 | Hal115-159 April 2013 e-ISSN. 2252-620x

Jurnal Rekayasa Elektrika Vol. 10, No. 3, April 2013

115

A PostgreSQL/PostGIS Implementation for the

Sightseeing Tour Planning Problem

Ardiansyah' dan Ruslan Rainis?
Jurusan Teknik Elektro, Universitas Syiah Kuala
JIn. Tgk. Syech Abdurrauf No. 7, Banda Aceh 23111
2Geography Section, School of Humanities, Universiti Sains Malaysia
Pulau Pinang, Malaysia 11800
e-mail: razan _dad@yahoo.com

Abstract—This article discusses a procedure for finding the best multi stops route for sightseeing tour through a
road network. The procedure involves building a database containing nodes and road network in PostgreSQL,
calculating the shortest distance between a pair of nodes using pgDijkstra module, and solving the tour problem
using a function written in PL/pgSQL. The function was developed based on the Nearest Insertion Algorithm for
solving the Travelling Salesman Problem. The algorithm inserts a sightseeing attraction (node) at the best position
in the existing route, which is between a pair of nodes that yields the minimum difference between the total tour time
before and after the new node was inserted. The test result shows that the function can solve the problem within
acceptable runtime for web application for total destination nodes of 22. It is concluded that the whole procedure was
suitable for developing Web GIS application that solve the sightseeing tour planning problem.

Keywords: tour planning problem, PL/pgSQL, PostgreSQL, Web GIS

Abstrak—Artikel ini membahas prosedur untuk menemukan rute multi-hentian terbaik untuk wisata Kkeliling
melalui jaringan jalan raya. Prosedur ini melibatkan pembangunan sebuah database yang berisi titik tujuan dan
jaringan jalan raya pada PostgreSQL, perhitungan jarak terpendek antara sepasang titik tujuan menggunakan
modul pgDijkstra, dan memecahkan masalah wisata keliling menggunakan fungsi yang ditulis dalam PL/pgSQL.
Fungsi ini dikembangkan berdasarkan Algoritma Penyisipan Terdekat untuk menyelesaikan Travelling Salesman
Problem. Algoritma tersebut menyisipkan titik tujuan wisata (simpul) pada posisi terbaik dalam jalur yang ada, yaitu
antara sepasang simpul yang menghasilkan perbedaan minimum antara waktu total wisata sebelum dan sesudah
simpul baru dimasukkan. Hasil pengujian menunjukkan bahwa fungsi tersebut dapat memecahkan masalah dalam
jangkauan waktu yang dapat diterima untuk aplikasi web dengan 22 simpul tujuan. Disimpulkan bahwa keseluruhan
prosedur sesuai untuk pengembangan aplikasi Web GIS yang memecahkan masalah perencanaan wisata keliling.

Kata kunci: masalah perencanaan wisata, PL/pgSQL, PostgreSQL, Web GLS

. INTRODUCTION

A web-based Geographical Information System (GIS),
or web GIS, is GIS capabilities that are put on web sites
[1]. In a Web GIS, a map is no longer a static image, but an
interactive object that can be zoomed in or out and panned
to a location of interest. Web GIS also makes it possible
for web users to do few GIS analysis through the web
without the need of GIS software.

Among the popular GIS analyses performed in the web
is the shortest path analysis which searches the best route
to travel from one place to another via a road network.
This analysis helps people to find the best route to travel
to a destination, but sometimes people need to arrange
the best route to visit a number of places within specific
period of time. An example when such a problem occurs
is when a person wants to arrange a one day tour to visit
tourist attraction within a city. Even though the shortest
path analysis can be executed in Web GIS by using either
commercial or free and open source software, a web GIS

which provides function to solve the sightseeing tour
planning problem is still difficult to find.

This article discusses a solution to the tour route
planning problem as mentioned above. An implementation
of the proposed solution using PostgreSQL is also
discussed. Since PostgreSQL is free open source software
that can serve data for web GIS, the solution will be very
economical for web GIS development.

II. BACKGROUND
A. Tour Planning Problem

Generally, the problem of planning a tour route can be
viewed as a variation of the Travelling Salesman Problem
(TSP) because their objectives are similar, which is to find
the best ordering of visiting several locations such that
the cost of the route travelled is minimized. Vaughn et.
al. categorized the problem as Travel Itinerary Planner
Problem (TIPP) [2]. They considered the problem as

Versi online (e-ISSN. 2252-620x)

116

a Vehicle Routing and Scheduling Problem with Time
Window (VRSPTW) which is a variation of the General
Asymmetric Travelling Salesman Problem (TSP) in which
the minimum tour has fixed origin and final destination
node, and the tour should be completed within specified
time constrained. The imposition of the time constraints
cuts the total number of possible tours but adds the
complexity of the problem at the same time [2].

A definition which is more specific to sightseeing
tour planning was given by Godart [3]. He referred to the
problem as the Trip Planning Problem (TPP) which seeks
to find a route from an origin to destination with several
stops at tourist attractions within a specified period of
time such that the cost of activities (i.e. visiting sights),
lodging possibilities and transportation is minimized and
the attractiveness of the trip is maximized with respect to
activities and lodging.

Joest and Stille defined the problem as the Enhanced
Profitable Tour Problem (EPTP) which has the goal to
find a route to visit nodes (tourist attractions) composing
it only once within the given time while maximizing the
prize of the nodes and arcs [4]. They simplified Godart’s
definition by not considering lodging possibilities. The
prize of the nodes and arcs are assigned accordingly to
reflect their position in user’s preference. Besides, nodes
are also weighted by the time required to visit them, and
arcs are weighted by the distance between the nodes they
interconnect [4]. The prize of nodes and arcs can combine
the attractiveness, cost and other factor into one a single
value for each of them.

B. Approaches to Solve Tour Planning Problem

Theoretically, an exact solution to the TSP can be found
by picking the best tours after generating and evaluating
all possible tours, but this method is computationally hard
and inefficient for the TSP with many destinations [5]. If
near-optimal solution is adequate, a heuristics algorithm
can be used to significantly improved computational and
hence a solution can be found faster.

The problem of planning tour route inherits the
complexity of the TSP in addition to its extra constraints.
Although there are various definitions of this problem, the
approaches to their solution are similar in principal, which
is making simplification to the problem and applying
heuristics approach to obtain good solution in a reasonable
amount of time. The simplification may be done by
reducing the complexity of the problem or by relaxing
some constraints.

Vaughn et. al. proposed a framework to solve the
problem which comprises three basic algorithms to select
a set of feasible destinations, provide the minimum path
between each pair of the selected destinations, and find the
solutions to the time constrained TSP [2].

The above framework requires integration between
the algorithms and databases to support travel itinerary
planning [2]. Vaughn further specified that the required
database includes network related data such as road links

Versi online (e-ISSN. 2252-620x)

Jurnal Rekayasa Elektrika Vol. 10, No. 3, April 2013

and nodes, average speeds and speed limits on each road
link; turn penalties. In addition to those data, the database
should also contain destination related data and relevant
maps which include detailed street level maps with
addressable locations.

Another approach proposed by Joest and Stille
implemented Vaughn’s algorithm to reduce the graph size
for solving the routing problem [4]. They used Dijkstra
shortest path algorithm to find the shortest path between
all pairs of places of interest and then used the result to
replace the original distances between places of interest.
Dijkstra algorithm is often used for searching the shortest
path between each pair of destinations in commercial car
navigation systems [7]. The nodes that do not represent
places of interest are deleted from the graph and the real
path is saved. The result is a complete graph consisting
only of places of interest and user-optimal paths between
them [4]. This reduction is important in facilitating
solution finding of the traveling salesman problem (TSP)
because the difficulty of the TSP increases as the number
of nodes grows.

Joest and Stille solved the reduced graph for the tour
route by applying an algorithm based on the insert/delete
heuristic of Mittenthal and Noon [4]. They generated
a tour by iteratively inserting the best possible node in
each step while keeping the total time within the given
constraint. They calculated the ratio of the change in cycle
prize to the change in cycle time for each node, which is
currently not in the tour, if the node is inserted between
each pair of nodes in the tour.The largest ratio indicates the
best node to be inserted at the optimal position between
a pair of node in the tour at the next step. The iteration
stops when there is no more feasible node to be inserted.
The tour obtained is then improved by considering a set of
nodes excluded from the tour while maintaining the tour
structure in everyiteration. This step is performed until
there is no further improvement gained [4].

C. PostgreSQOL

PostgreSQL is an open-source object-relational
database management system (ORDBMS) derived from
POSTGRES Version 4.21. PostgreSQL supports most
of the SQL standards and offers many modern features,
such as complex queries, foreign keys, triggers, views,
transactional integrity, and multiversion concurrency
control. PostgreSQL gives flexibility for users to extend
it by adding data types, functions, operators, aggregate
functions, index methods, and procedural languages [8].

One important PostgreSQL feature is a loadable
procedural language for PostgreSQL database system.
The language, which is called PL/pgSQL, combines the
power of procedural language with the ease of use of
Structured Query Language (SQL), the standard language
for accessing and manipulating data in relational database.
PL/pgSQL can do anything that can be defined in C
language functions except for input/output conversion
and calculation functions for user-defined types. PL/

Ardiansyah: A PostgreSQL/PostGIS Implementation for the Sightseeing Tour Planning Problem 117

pgSQL gives significant advantage in performing a group
of queries to the database. Every SQL statement must be
executed individually by the database server. Normally,
a series of query must be sent one by one from client
application to the database server. Each of them requires
certain amount of time due to interprocess communication.
Additional time for network overhead is necessary if the
server and clients located in different machine. A function
that performs a block of computation and a series of
queries inside the database server can be created by
using PL/pgSQL. Client only needs to send a single SQL
statement which invokes the function to perform a group
of queries, and thus a lot of time can be saved.

A set of functions which are combined to accomplish
certain task is called a module. An example of such module
is Pgdijkstra, which was created by Sylvain Pasche for
performing shortest path queries based on the Dijkstra
algorithm. The core of this module is a function which
computes a shortest path from a set of edges and vertices.

Capabilities of PostgreSQL can be exetended by
installing extension to the DBMS software. One example
is PostGIS, which is an extension to the PostgreSQL that
allows GIS (Geographic Information Systems) objects
to be stored in the database. It also provides supports
for spatial indexes as well as functions for analysis and
processing of GIS objects. PostGIS is necessary for
PostgreSQL to supply spatial data for a Web GIS and
requirement of PgDijkstra module.

III. METHOD

In general, the solution to the sightseeing or city tour
planning problem discussed in this article follows the
method of Joest and Stille [4], which starts by building
street network dataset, simplifying the network, and
solving the reduced network (graph). The difference is in
the algorithm for solving the TSP in the reduced network.
In this article, the solution to the TSP is based on the
Nearest Insertion Algorithm for solving TSP [5] with some
modification. The algorithm is summarized below:

1. Initialize set R with the start node i and set 7"to contain
the candidates for destination nodes. The total time
spent in the tour (¢,) is equal to 0 (zero).

2. Remove anode from set T, insert it into set R and place
it after the node i.

3. Remove a node s from set 7. Then for each pair of
nodes « and v in set R, calculate the change regarding
the time (or cost), Az, if node s is inserted between
that node. Az is defined as:

Atsuv =l g, — (1)

where:

t . is the time or cost of travelling from node u to node s
[;v is the time or cost of travelling from node s to node v
fw is the time or cost of travelling from node u to node
v

Record the minimum Az and the nodes u and v which
give the minimum value.

4. Check whether or not the following constraint is
satisfied:

min(A¢

suv

)+ t < —— (2)
where:

t . is the time spent at node s (node cost)

min(Atm) is the minimum A¢_

t, .. 1is the user specified maximum tour time

tmuis the total time spent in the tour
5. If equation (2) is satisfied, the node s will be inserted

between the pair of nodes u and v which gives the

minimum Af_ .

Otherwise, the node s will be discarded and the process

is repeated from Step 3.

6. After adding the node s, update the total tour time (z,)
by adding min(Az) + ¢ to the current ttot.
7. Repeat Step 3 to 7 until all the nodes in T are inserted

into set R.

The destination nodes were ranked based on their
popularity. The algorithm ensures the most attractive
destinations are included in the list as long as time permits
by picking the highest ranking node available in each
iteration.

The sightseeing or city tour problem has limited
destinations (nodes). Therefore, it is possible to calculate
the shortest time (or least cost) to travel from a node to
another using the Dijkstra algorithm and stored the result
in a table in the database. This approach actually simplifies
the road network because there are only limited number of
nodes and the shortest time for each pair of nodes which
need to be considered for solving the TSP based on the
above algorithm.

IV. IMPLEMENTATION DAN DISCUSSIONS

Before implementing steps explained in the Method
section, a database which stores sightseeing attractions
(nodes) and road network data was built. There were 22
sightseeing attractions used for testing the implementation,
while the road network consisted of around 1000 line
segments. Those spatial data are shown in Figure 1.
Spatial data, such as points representing sightseeeing
attractions and lines representing the road, were prepared
using GIS software and then converted into PostgreSQL
format. Storing of spatial data in a PostgreSQL database
is possible when PostGIS extension is added to the DBMS
software.

The ranking of each sightseeing attraction relative to
the other and estimated time spent at the attraction (node
cost) were stored along with the node spatial data in a table
named node. The road spatial data of the road as well as
the attribute data, including name of roads, class of roads,
and time needed to travel through each road were stored
in other table. The road network was built from the road
data by using a function which is available in pgDijkstra
module. The shortest time to travel from an attraction to
another was then calculated by using another function
in pgDijkstra module, and the results were stored in the

Versi online (e-ISSN. 2252-620x)

118

Legend
Sightseeing Attractions
.

Road

Figure 1. Sightseeing attractions and road data used for testing the
implementation of the algorithm
database in a table named path.

Implementation of the algorithm described previously
in the Method section required searching and retrieving
appropriate data from node and path tables. Those tasks
can be done quickly and easily by using SQL statement.
Since determining the best position to insert a node
requires an iterative process of finding the position that
gives the minimum cost, SQL statements which retrieve
appropriate data from the database must be executed
repeatedly. As it is discussed previously, the best way to
execute a block of computations and a series of queries
in PostgreSQL is by creating a function using PL/pgSQL
language. Such function can perform the entire algorithm
efficiently within PostGIS/PostgreSQL. Therefore, a PL/
pgSQL functions named make_route() was created inside
the database. This function generates the best route based
on user-specified maximum tour time. The function takes
the starting node 1D, the maximum tour time in minutes,
and mode of tour (one way or round trip) as the inputs. The
functions return a set of records that contains data of the
resulting route, which are node ID, time spent at a node,
and travel time between from a node to the next node.

Function make_route() checks whether or not the
resulting route violates the given maximum tour time. If
inserting a node in its best position will cause the total
tour time exceeds the maximum time, the node will not
be inserted. The function will find another node which
can be inserted into the route without violating the given
maximum time. This function will always test all nodes in
the node table because it tries to include as many nodes as
possible into the route for the given maximum tour time.
Nodes are retrieved from the database according to their
rankings, starting from the highest ranking. No matter
what is the value of the maximum time, function make
route() will do the iteration until all the nodes are retrieved
and tested.

The function uses three arrays to hold information of
the generated route, which is referred to as set R in the

Versi online (e-ISSN. 2252-620x)

Jurnal Rekayasa Elektrika Vol. 10, No. 3, April 2013

algorithm. The first array keeps the node ID of all nodes
that makes up the route. The second array keeps the node
cost of each node in the first array. The node cost of the i-th
element in the first array is the i-th element in the second
array. The third array stores the cost of travelling from a
node to the next node. The i—-th element of this array is a
cost of travelling from the i-th node to the (i+1)-th node
in the first array. The last element of the third array will
be 0 (zero) because the tour ends at that node (sightseeing
attraction).

In the case of one-way trip mode, the first array is
initialized with a start node. The best position to insert a
node is determined by calculating the change regarding
the time (or cost), A¢, if the node is inserted between the
i-th and the (i+1)-th element of the array. The calculation
follows the steps given in the algorithm. Initially, the cost
of travelling from the last element of the array to the new
node is assigned as the minimum A¢, andthe index of the
last element is stored as the best position. Then, nodes are
retrieved from the node table one-by-one, starting from
the highest ranked node. Each time a node is retrieved,
two values of shortest time are retrieve from path table.
One is for traveling from the i-th element to the node (or,
to-node cost), and the other is for travelling from from the
node to the (i+1)-th element (or from-node cost). For each
pair of the i-th and (i+1)-th element of the array, the Af is
calculated and then the result is compared to the current
minimum At. If the new Af is smaller, then it replaces the
current minimum Az. The index 7 is stored as the best index
(min_idx). The cost of traveling from this i-th element
to the new node is stored as the minimum to-node cost,
whereas cost of traveling from the new element to the
corresponding (i+1)-th element is stored as the minimum
from-node cost. After all the elements in the first array are
checked, minimum At is used to check whether Eq. (2) is
satisfied. If so, the new node is inserted into the first array
between the min_idx-th and (min_idx+1)-th elements. The
second array is updated by inserting the node cost at the
same position as its corresponding node. The third array
is updated by replacing the min_idx-th element with the
minimum to-node cost and inserting the minimum from-
node cost after that element. Those updated arrays are then
used to determine the best position to insert the next node.

For the round trip mode, the first array is initialized
with two elements and both of them are the start node.
This is to indicate that the tour starts and ends at the same
place. The new nodes will be inserted between these two
nodes. Initially, the minimum A¢ is set to 999999. The
procedure of determining the best position and inserting
the new node is the same as in the case of one-way trip
described above.

The function was tested by executing it through an
SQL SELECT query statement in pgAdmin tools of
PostgreSQL. The query statement invokes the function
to generate one-way tour route from a selected starting
point and specified maximum tour time. The tests were
conducted by increasing the maximum tour time gradually
while keeping the starting point the same throughout the

Ardiansyah: A PostgreSQL/PostGIS Implementation for the Sightseeing Tour Planning Problem 119

test. The test was repeated three times for each selected
maximum tour time, and the average execution time of
the query was calculated for each case. The tests were
conducted using an NEC PowerMate PC Series with 3.0
GHz Intel Pentium® 4 CPU and 512 MB of RAM. The
test results are summarized in Table 1.

The number of available sightseeing attractions
(nodes) in the database used in the test was 22. Thus,
the test stopped at the maximum tour time of 14.5 hours
because all the nodes were visited when this values was
input. Table 1 shows that the maximum average run time
of make_route() function was 82.8 ms.

A study on Quality of Service for Web conducted by
Bouchet. al. found that the threshold where QoS as ‘Low’
is around 11 seconds [9]. Nielsen stated that users start
to feel the web is slow if the response time is longer than
1 second, while delays greater than 10 seconds cause
users to lose their focus to the operation and switch to
other task [10]. Therefore, the average run time of 82.8
ms is acceptable for Web application because it does not
add much to the web response time. The function can be
used for finding the best sightseeing or city tour route in a
Web GIS application as long as the number of sightseeing
attractions is not too many. The result shows the runtime
is still acceptable (much less than 0.1 seconds) when the
number of nodes is 22.

Even though the make route() function always checks
all the available nodes in the database, its running time
still varies according to given maximum tour time. This
variation occurs because make_route() function traverses
two loops. The outer loop depends on the number of nodes
available in the database, while the inner loop depends
on the number of nodes which are already inserted in the
array. Less tour time allows less nodes inserted into the
array, and thus, less iteration needed for checking whether
a new node can be inserted.

V. CONCLUSIONS

This article discussed a procedure for finding the
best multi stops route for sightseeing tour through a
road network. The procedure was developed based on
the Nearest Insertion Algorithm. The algorithm inserts
a sightseeing attraction (node) at the best position in the
existing route, which is between a pair of places that yields
the minimum difference between the total tour time before
and after the new node is inserted. A node is inserted into
an existing route only if the resulting tou time does not
violate the given maximum tour time. In this case the time
spent at each node is also added up to the tour time.

The algorithm was implemented as a function written
in PL/pgSQL language ofPostgreSQL DBMS software.
The function was tested to solve sightseeing tour planning
problem with different maximum tour time, and was
able to give solution in much less than 0.1 seconds for
22 destination nodes. Since PostgreSQL can provide data
for Web GIS, adding the function, along with PostGIS

Table 1. Results of executing make_route() function with different
maximum tour time

Maximum Tour Average runtime Number of places

No

Time (hours) (ms) visited in the route
1 1.0 21.8 2
2 1.5 35.8 3
3 3.0 40.8 5
4 5.0 49.7 7
5 8.0 67.2 12
6 10.0 76.8 15
7 12.0 77.9 18
8 14.0 82.9 21
9 14.5 82.8 22

extension and pgDijkstra module, to PostgreSQL will
make it possible to develop a Web GIS application which
can provide solution to the sightseeing tour planning
problem.

REFERENCES

[1] K. Zheng, T. R. Soomro, and Y. Pan, “Web GIS: Implementation
issues,” Chinese Geographical Science, vol. 10, no. 1, pp. 74-79,
Beijing, China: Science Press, 2000.

[2] K.M. Vaughn, M. A. Abdel-Aty, and R. Kitamura, “A framework
for developing a daily activity and multimodal travel planner,”
International Transactions in Operational Research, vol. 6, pp.
107-121, 1999.

[3] J. M. Godart, “Using the trip planning problem for computer-
assisted customization of sightseeing tours,” in Information and
Communication Technologies in Tourism, P. J. Sheldon, K. W.
Wober, and D. R. Fesenmaier, Eds., Montreal, Canada: Springer,
2001.

[4] M. Joest and W. Stille, “A user-aware tour proposal framework
using a hybrid optimization approach,” Int. Proc. of 10th ACM
Int’l Symp. Advances in GIS, 2003.

[5] D. S. Johnson and C. H. Papadimitriou, “Computational
complexity,” in The Traveling Salesman Problem, E. L. Lawler,
J. K. Lenstra, A. H. G. R. Kan and D. B. Shmoys, Eds. New York,
NY: John Wiley & Sons, 1985.

[6] D.S. Johnson and C. H. Papadimitriou, “Performance guarantees
for heuristics,” in The Traveling Salesman Problem, E. L. Lawler,
J.K. Lenstra, A. H. G. R. Kan and D. B. Shmoys, Eds. New York,
NY: John Wiley & Sons, 1985.

[7] A. Maruyama, N. Shibata, Y. Murata, K. Yasumoto, and M.
Ito, “A personal tourism navigation system to support traveling
multiple destinations with time restrictions,” /8th International
Conference on Advanced Information Networking and
Applications (AINA’04), 2004.

[8] The PostgreSQL Global Development Group. (Oct. 11, 2006).
PostgreSQL 8.1.4 Documentation [Online]. Avalaible: http:/
www.postgresql.org/docs/manuals/.

[91 A.Bouch, A. Kuchinsky, and N. Bhatti, “Quality is in the eye of
the beholder: Meeting Users’ Requirements for Internet Quality
of Service,” Proceedings of CHI2000 Conference on Human
Factors in Computing System, 2000.

[10] J. Nielson, Usability engineering, Boston , MA:AP Professional
Press, 1994.

Versi online (e-ISSN. 2252-620x)

Penerbit:
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Syiah Kuala
JI. Tgk. Syech Abdurrauf No. 7, Banda Aceh 23111

website: http://jurnal.unsyiah.ac.id/JRE
email: rekayasa.elektrika@unsyiah.net
141214785

Telp/Fax: (0651) 7554336

