ANALISIS PENYERAPAN ENERGI DAN POLA DEFORMASI CRASH BOX DENGAN VARIASI SUDUT TIRUS DINDING CRASH BOX PADA UJI SIMULASI TABRAKAN ARAH FRONTAL

Moch. Agus Choiron, Djarot B. Darmadi, Bintang Rahmaddian Anwari Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya Jalan M.T. Haryono no. 167, Malang 65145, Indonesia Email: ra.bintang@yahoo.com

Abstrak

Sistem transportasi merupakan salah satu kebutuhan yang penting untuk dipenuhi dalam mempermudah kehidupan pada zaman modern ini. Di sisi lain, meningkatnya kebutuhan akan hal tersebut juga akan ikut meningkatkan produksi kendaraan yang secara tidak langsung turut meningkatkan jumlah kecelakaan. Meninjau hal tersebut, standar keselamatan kendaraan yang lebih baik sangat dibutuhkan, salah satunya adalah crash box. Crash box merupakan sistem keamanan pasif yang digunakan untuk mengurangi tingkat keparahan kecelakaan yang dialami penumpang atau bagian kendaraan yang vital akibat tabrakan. Penelitian ini meninjau pengaruh variasi sudut tirus dinding crash box berpenampang lingkaran (circular) terhadap pola deformasi dan penyerapan energi pada uji simulasi tabrakan arah frontal. Penelitian dilakukan dengan software berbasis metode elemen hingga (MEH). Variasi yang digunakan dalam penelitian ini yaitu crash box dengan sudut tirus (α) 0,2°; 0,4°; 0,6°; 0,8; dan 1,0° dengan material crash box baja AISI 1340. Dari hasil penelitian diperoleh bahwa pola deformasi yang terbentuk adalah pola aksial dengan mode concertina dan campuran (concertina + diamond). Deformasi mode campuran terjadi pada crash box t_a 1,6 α 0,0°; α 0,8°; α 1,0°. Penyerapan energi meningkat seiring bertambah besarnya sudut tirus dinding crash box, dengan kemampuan menyerap energi terbesar pada crash box dengan sudut tirus (α) 1.0° sebesar 10823 J. Semakin besarnva sudut tirus dinding crash box juga menunjukkan peningkatan penyerapan energi spesifik crash box. Kata kunci: crash box, sudut tirus, tabrakan frontal, pola deformasi, penyerapan energy

PENDAHULUAN

Seiring perkembangan teknologi, perkembangan sistem keamanan pada alat transportasi sangat diperlukan dikarenakan semakin meningkatnya kebutuhan akan kendaraan untuk menuniang mobilitas masyarakat. Kecelakaan lalu lintas merupakan salah satu hal yang perlu terkait sistem keamanan diperhatikan vang dikembangkan. Jumlah kecelakaan lalu lintas tahun 2013 mencapai angka 100.106 dengan jumlah korban meninggal sebanyak 26.416 [1]. Solusi dari hal tersebut adalah dengan ditambahkannya sistem keamanan yang dilakukan oleh produsen alat transportasi khususnya produsen kendaraan roda empat agar dampak yang ditimbulkan dari kecelakaan yang terjadi pada pengemudi dapat dikurangi.

Crash box merupakan sistem keamanan pasif (*passive safety system*) dan merupakan salah satu bagian dari *crashworthy system* yang digunakan untuk mengurangi tingkat keparahaan kecelakaan yang dialami penumpang atau bagian kendaraan yang vital akibat tabrakan frontal [2]. *Crash box* berupa struktur berdinding tipis (*thin-walled structure*) yang diharapkan mengalami deformasi permanen untuk menyerap energi akibat tabrakan.

Velmurugan dan Muralikannan (2009) meneliti karakteristik penyerapan energi pada *crash box* dengan melakukan pengujian *quasi-static* dari beberapa macam bentuk penampang diantaranya lingkaran (*circle*), persegi (*square*), dan persegi panjang (*rectangular*), masing-masing *crash box* memiliki ketebalan yang sama.

Hasil penelitian tersebut menunjukkan penyerapan energi spesifik pada penampang lingkaran (*circle*) lebih tinggi daripada penampang persegi (*square*) dan persegi panjang (*rectangular*) sedangkan penampang persegi (*square*) lebih tinggi daripada persegi panjang (*rectangular*) [4].

Dari penelitian yang telah disebutkan, masih belum diketahui pengaruh sudut tirus pada suatu crash box terhadap energi yang mampu diserap. Dari latar belakang tersebut, dilakukan penelitian lebih lanjut mengenai pengaruh variasi sudut tirus (α) pada tiap model simulasi crash box terhadap kemampuannya dalam menyerap energi juga pola deformasinya. Dipilih crash box yang berpenampang lingkaran untuk mendukung hasil penelitian sebelumnya.

METODE PENELITAN

Metode penelitian yang digunakan dalam peneltian ini adalah eksperimental semu dengan simulasi komputer menggunakan *software* yang berbasis metode elemen hingga.

Variabel Penelitian

- Variabel Bebas
- Variabel bebas dalam penelitian ini adalah sudut tirus (α) dinding *crash box*.

Tabel 1. Variasi Sudut Tirus

No	t _a (mm)	α (°)
1	1,6	0
2	1,6	0,2
3	1,6	0,4
4	1,6	0,6
5	1,6	0,8
6	1,6	1,0

Gambar 2. Dimensi Crash Box

- Variabel Terikat Dalam penelitian ini yang menjadi variabel terikat adalah penyerapan energi dan pola deformasi
- Variabel Terkontrol
 - a. *Crash box* berpenampang lingkaran dengan tebal dinding atas 1,6 mm, diameter luar 75 mm dan panjang *crash box* 150 mm.
 - b. Kecepatan tabrakan arah frontal 7,67 m/s.
 - c. Material crash box adalah baja AISI 1340.
 - d. Impactor dimodelkan rigid.

Quasi-Static Test

Quasi-Static Test merupakan suatu pengujian destruktif untuk menguji kemampuan suatu *crash box* dalam menyerap energi, prosedur pengujiannya adalah dengan cara *crash box* diletakkan di dasar mesin uji dengan tumpuan baja dan kemudian dikenai kompresi aksial dengan kelajuan konstan sebesar 7,67 m/s. Pengujian ini digunakan sebagai acuan validasi terhadap simulasi yang dilakukan.

Data Material

Material yang digunakan dalam penelitian ini yaitu baja AISI 1340 dengan model plastisitas bilinear

isotropic hardening

Tabel 3.2 Material properties crash box			
Baja AISI 1340			
Density (kg/m ³)	8077		
Poisson's Ratio	0.29		
Modulus Elastisitas (GPa)	205		
Yield Strength (MPa)	266.94		
Shear Modulus (GPa)	76		

Gambar 3. Diagram Tegangan-Regangan Plastis Baja AISI 1340

Meshing

Meshing adalah proses membagi obyek yang semula adalah elemen tak terhingga (*infinite*) menjadi elemen-elemen tertentu dengan jumlah yang berhingga (*finite*). Dalam penelitian ini digunakan meshing secara otomatis dengan jenis elemen explicit dan tipe elemen brick 8 node dengan ukuran 1,3 mm untuk crash box dan elemen solid heksahedron dengan ukuran 30 mm untuk impactor.

Gambar 4. Meshing pada Software MEH

Simulasi dan Pembebanan

Proses simulasi dalam penelitian ini dimulai dengan keadaan awal impactor dan crash box

menempel. *Impactor* dimodelkan sebagai *rigid* body sedangkan *crash* box sebagai *flexible* body. Tumpuan jenis *fixed* support diposisikan pada bagian bawah *crash* box. Dalam simulasi, *impactor* akan bergerak menumbuk *crash* box dengan kecepatan 7,67 m/s searah aksial terhadap *crash* box. Tumbukan ini akan mengakibatkan *crash* box mengalami deformasi. Simulasi dilakukan sampai waktu 1×10^{-2} detik.

Gambar 5. Pemodelan pada Software MEH

Verifikasi Penelitian

Verifikasi penelitian dilakukan pada penelitian Velmurugan et. al. (2009) dengan *crash box* berpenampang lingkaran dengan dimensi sebagai berikut:

Diameter	= 75 mm
Panjang	= 150 mm
Ketebalan	= 1.6 mm
Material	= Baja AISI 1340

Gambar 6. Crash Box Verifikasi

Gambar 7. Grafik Perbandingan Hasil Simulasi dan Eksperimen

Tabel 4. Data Perbandingan Hasil Simulasi danEksperimen

Simulasi	Eksperimental Nyata	
Gaya Rata-Rata:	Gaya Rata-Rata:	
57,335 kN	55 kN	
Energi yang Diserap:	Energi yang Diserap:	
3440,1 Joule	3306,57 Joule	

Gaya Rata-Rataerror (%) 57,335 - 55 $\times 100\% - 4$

 $\frac{57,335 - 55}{57,335} \times 100\% = 4,073\%$

Energi_{error} (%) $\frac{3440,1-3306,57}{3440,1} \times 100\% = 3,882\%$

PEMBAHASAN

•

Data Hasil Simulasi

Diperoleh hasil berupa pola deformasi yang terjadi dan penyerapan energi pada *crash box*. Data penyerapan energi *crash box* dengan variasi sudut tirus dinding (α) ditunjukkan pada tabel 5.

Tabel 5. Data Hasil Simulasi

No	t _a (mm)	α (°)	Penyerapan Energi (J)
1	1,6	0	4987,41
2	1,6	0,2	5706,74
3	1,6	0,4	6744,45
4	1,6	0,6	8035,45
5	1,6	0,8	9421,21
6	1,6	1,0	10822,96

Grafik gaya reaksi - deformasi yang digunakan untuk mengukur besar penyerapan energi diperoleh dengan cara menggabungkan grafik deformasi terhadap waktu dan gaya reaksi terhadap waktu yang diperoleh dari *software* MEH.

Pola Deformasi Crash Box

Secara umum pola deformasi yang terjadi untuk seluruh *crash box* telah sesuai dengan yang dikemukakan oleh Velmurugan dan Muralikannan (2009) dalam penelitiannya bahwa pada *axially loaded test* pola deformasi *crash box* bisa terjadi dalam dua mode yaitu mode aksisimetris atau biasa disebut *concertina* dan mode *diamond* dimana lipatan-lipatan transversal dan longitudinal terbentuk. Pada penelitian ini, setiap *crash box* mengalami pola deformasi berupa mode *concertina*. Deformasi mode *diamond* hanya terjadi pada *crash box* tanpa ketirusan dinding. Apabila suatu model *crash box* telah mengalami deformasi mode *diamond* maka deformasinya tidak akan bisa kembali ke mode *concertina*.

Terlihat pada tabel 6 bahwa pada *crash box* t_a 1,6 α 0,0°; α 0,8°; α 1,0° memiliki mode *diamond* pada deformasinya. Hal tersebut bisa dikarenakan ketidakseimbangan *crash box* dalam menerima beban yang disebabkan oleh adanya bagian yang mengalami pecah, sehingga bagian yang mengalami pecah yang lebih sedikit cenderung lebih dapat mempertahankan posisinya terhadap deformasi.

Gambar 8. Grafik Hubungan Penyerapan Energi Crash Box Dan Besar Sudut Tirus

Dari hasil simulasi yang ditunjukkan oleh Tabel 5, *crash box* dengan tebal dinding 1,6 mm tanpa ketirusan dinding memiliki penyerapan energi sebesar 4987,41 J. Dari gambar 8 dapat diketahui bahwa semakin besar sudut tirus dinding *crash box* maka kemampuan penyerapan energi akan mengalami peningkatan.

Hal ini dikarenakan semakin besar sudut tirus dinding *crash box* maka akan membuat kekakuan dari *crash box* tersebut semakin meningkat. *Crash*

box yang kaku akan memberikan gaya reaksi yang lebih tinggi sehingga energi regangannya semakin tinggi sesuai persamaan energi regangan [5]:

$$U = \int_0^{\delta} P(\delta) \ d\delta$$

Dengan :

U = Energi regangan (J) P = Gaya reaksi(N)

 δ = Perpindahan (m)

Semakin besar sudut tirus dinding *crash box* maka akan semakin besar pula inersianya. Dengan semakin besarnya inersia suatu *crash box* akan semakin memperbesar P_{cr} *crash box* pada awal *buckling* sesuai dengan rumus [6]:

$$P_{cr} = \frac{\pi^2 EI}{4L^2}$$

Dengan :

 P_{cr} = Beban kritis (N)

E = Modulus Elastisitas (Pa)

I = Momen inersia penampang (m⁴)

L = Panjang kolom (m)

Penyerapan Energi Spesifik Crash Box

Penyerapan energi spesifik (*specific energy absorption*) adalah ukuran yang menyatakan energi yang diserap oleh *crash box* per satuan massa. Besaran ini perlu dihitung karena dalam penelitian ini peningkatan sudut tirus dinding akan mempengaruhi massa *crash box*. Penghitungan penyerapan energi spesifik *crash box* dimaksudkan untuk mengetahui tingkat keefektifan sudut tirus dinding *crash box*.

label 7. Massa Liap Crash Bo

No	t _a (mm)	α (°)	Massa (kg)
1	1,6	0	0,2682
2	1,6	0,2	0,2939
3	1,6	0,4	0,3194
4	1,6	0,6	0,3448
5	1,6	0,8	0,3700
6	1.6	1.0	0.3951

Tabel 8. Penyerapan energi spesifik				
No	t _a (mm)	α (°)	Energi (Joule)	Energi Spesifik (J/kg)
1	1,6	0	4987,41	18595,86
2	1,6	0,2	5706,74	19417,95
3	1,6	0,4	6744,45	21115,34
4	1,6	0,6	8035,45	23305,35
5	1,6	0,8	9421,21	25461,35
6	1,6	1,0	10822,96	27392,27

No	t _a (mm)	α (°)	Keterangan gambar (mode <i>concertina</i> dilingkari kuning dan mode <i>diamond</i> dilingkari merah)
1	1,6	0,0	
2	1,6	0,2	
3	1,6	0,4	
4	1,6	0,6	
5	1,6	0,8	

Tabel 6. Mode deformasi yang terbentuk

Gambar 9. Grafik Hubungan Penyerapan Energi Spesifik terhadap Sudut Tirus

Pada gambar 9 yang menunjukkan grafik hubungan penyerapan energi spesifik terhadap sudut tirus, dapat dilihat bahwa seiring meningkatnya sudut tirus maka penyerapan energi spesifiknya juga akan semakin meningkat disebabkan oleh rentang kenaikan penyerapan energi lebih besar dibandingkan rentang kenaikan massa. Hal tersebut menunjukkan bahwa semakin besar sudut tirus suatu crash box maka akan semakin efektif pula dalam menyerap energi.

Gambar 10. Grafik gaya reaksi - deformasi *crash box* dengan variasi sudut tirus dinding

Pada grafik hubungan gaya reaksi – deformasi dapat dianalisis berdasarkan luas daerah dibawah kurva masing-masing *crash box*. Luas daerah di bawah kurva menunjukkan usaha yang dilakukan oleh beban pada *crash box*. Usaha dari beban itu saat dikenakan pada *crash box* diubah menjadi energi regangan. Dengan asumsi bahwa keseluruhan energi kinetik terkonversi menjadi energi regangan, maka dapat disimpulkan bahwa usaha beban sama dengan energi regangan pada material *crash box*.

Pada grafik terlihat bahwa semakin besar sudut tirus suatu *crash box* maka gaya reaksi puncak yang dialami juga akan semakin besar. Pada *crash box* tanpa ketirusan dinding memiliki gaya reaksi puncak sebesar 122 kN sedangkan pada *crash box* dengan sudut tirus 1,0° gaya reaksi puncaknya mencapai 312 kN.

Berdasarkan hasil pengukuran luas daerah dibawah grafik gaya reaksi – deformasi menggunakan *software CAD* diperoleh hasil seperti pada tabel 9 berikut. Digunakan faktor skala yang merupakan hasil perbandingan dari nilai energi dengan luas grafik dalam gambar *CAD* yaitu sebesar 0,33 J/mm².

Tabel 9. Hasil	pengukuran	luasan
----------------	------------	--------

No	t _a (mm)	α (°)	Luas (mm²)	Penyerapan Energi (Joule)
1	1,6	0,0	14962,2	4987,41
2	1,6	0,2	17120,2	5706,74
3	1,6	0,4	20233,4	6744,45
4	1,6	0,6	24106,4	8035,45
5	1,6	0,8	28263,6	9421,21
6	1,6	1,0	32468,9	10822,96

Luas daerah di bawah grafik semakin luas seiring bertambahnya sudut tirus dinding *crash box* dengan nilai tertinggi pada *crash box* dengan sudut tirus dinding 1,0°.

Besar Penyerapan Energi Crash Box dari Ketinggian Tertentu

Pada bagian ini dibahas mengenai besar penyerapan energi *crash box* dari ketinggian tertentu. Dimana sebelum simulasi dijalankan, pada model *crash box* diberi *surface* analisa pada ketinggian tertentu pada suatu *crash box* untuk mengetahui besarnya gaya reaksi dan deformasi yang terjadinya dimulai pada letak *surface* analisa tersebut. Letak *surface* analisa tersebut ditunjukkan pada gambar 11 berikut:

Gambar 11. Surface Analisa pada Ketinggian Tertentu pada Suatu Crash Box. (A: Ujung, B: 30 mm dari A, C: 60 mm dari A, D: 90 mm dari A)

Deformasi yang terjadi dan letak *surface* analisa sebelum deformasi pada *crash box* t_a 1,6 α 0,0° dan *crash box* t_a 1,6 α 0,6° ditunjukkan oleh gambar 12 berikut:

Gambar 12. Deformasi yang terjadi dan letak surface analisa sebelum deformasi pada crash box ta $1.6 \alpha 0.0^{\circ}$

Gambar 13. Deformasi yang terjadi dan letak surface analisa sebelum deformasi pada crash box $t_a 1,6 \ \alpha \ 0,6^\circ$

Gaya-gaya reaksi dan deformasi yang terjadi pada setiap *surface* analisa digambarkan oleh grafik pada Gambar 14 dan Gambar 15 berikut:

Gambar 14. Gaya-gaya reaksi yang terjadi dari setiap *surface* analisa

Gambar 15. Deformasi yang terjadi dari setiap surface analisa

Penggabungan antara kedua grafik diatas yaitu ketika gaya reaksi diposisikan pada sumbu y dan deformasi diposisikan pada sumbu x maka akan dihasilkan grafik gaya reaksi - deformasi dimana luas daerah dibawah kurva grafik tersebut merupakan besar energi yang diserap oleh crash box. Sehingga dapat diketahui besarnya penyerapan energi suatu crash box yang dimulai pada surface analisa pada ketinggian tertentu yang telah ditentukan. Surface analisa pertama yaitu A yang terletak pada ujung crash box yang memiliki kontak langsung dengan impactor, B terletak sejauh 30 mm dari A, C terletak sejauh 60 mm dari A, dan D terletak sejauh 90 mm dari A. Grafik gaya reaksi - deformasi yang dimaksud ditunjukkan oleh Gambar 16.

Dari Gambar 16 dapat dilihat bahwa penyerapan energi paling besar terjadi pada bagian paling atas crash box dan semakin ke bawah bagian *crash box* semakin kecil peranannya dalam menyerap energi. Hal tersebut dikarenakan energi dari impactor diserap oleh crash box menjadi energi regangan melalui deformasi yang paling banyak terjadi pada bagian atas crash box. Rincian energi yang diserap oleh crash box dari surface analisa A, B, C, dan D disajikan pada Tabel 10.

Gambar 16. Kurva gaya reaksi – deformasi dari setiap surface analisa

Tabel 10. Penyerapan energi dari setiap surface analisa

Penyerapan Energi (J)		
Crash Box	Crash Box	
ta 1,6 mm	ta 1,6 mm	
α 0,0°	α 0,6°	
3587.94	6562,06	
1395.36	1939.3	
729.66	907,17	
219.36	630,13	
	$\frac{Penyerapar}{Crash Box} t_a 1,6 mm \\ \alpha 0,0^{\circ} \\ 3587.94 \\ 1395.36 \\ 729.66 \\ 219.36 \\ \end{array}$	

Pada Gambar 14 ditunjukkan bahwa pada waktu mencapai 0,003 dan 0,006 detik terjadi penurunan drastis pada gaya reaksi yang dialami oleh surface analisa B dan C pada crash box ta 1,6 mm α 0,0°. Hal yang sama terjadi pada crash box ta 1,6 mm α 0,6° ketika waktu mencapai 0,0025 dan 0,0055 detik. Hal tersebut dikarenakan pada surface analisa B dan C pada waktu tersebut mengalami buckling yang membuat gaya reaksi yang diterima menjadi berkurang.

KESIMPULAN

Berdasarkan analisis yang telah dilakukan dalam penelitian ini dapat disimpulkan bahwa pola deformasi yang terbentuk pada crash box circular dengan ketirusan dinding dalam uji tabrakan arah frontal adalah pola buckling aksial ditunjukkan dengan adanya lipatan-lipatan pada dinding crash box yang cenderung aksisimetris dengan mode concertina. Semakin besar sudut tirus dinding crash

box maka semakin besar pula energi yang mampu diserap, yaitu pada *crash box* dengan tebal (t_a) 1,6 mm dan sudut tirus (α) 1,0° mampu menyerap energi sebesar 10822.963 Joule. *Crash box* dengan tebal (t_a) 1,6 mm dan sudut tirus (α) 1,0° merupakan *crash box* dengan ketirusan dinding yang memiliki penyerapan energi spesifik yang paling baik dengan nilai sebesar 27392,27 Joule/kg.

DAFTAR PUSTAKA

- [1] Badan Pusat Statistik. 2014. Jumlah Kecelakaan, Korban Mati, Luka Berat, Luka Ringan, dan Kerugian Materi yang Diderita Tahun 1992-2013. Indonesia : Badan Pusat Statistik.
- [2] Najmi Yahya Talib (2013),. Analisis Penyerapan Energi dan Deformasi Crash Box dengan Variasi Diameter dan Panjang Pada Uji Dropped Weight Impact. Jurnal Rekayasa Mesin.

- [3] F. Tarlochan, F. Samer, A.M.S. Hamouda, S. Ramesh, K. Khalid (2013), *Design of Thin Wall Structures for Energy Absorption Application: Enhancement of Crashworthiness Due to Axial and Oblique Impact Forces*, Journal of Thin-Walled Structures, 71: 7-17.
- [4] Velmurugan, R. and R. Muralikannan (2009), Energy Absorption Characteristics of Annealed Steel Tubes of Various Cross Section in Static and Dynamic Loading. Latin American Journal of Solid and Structures, vol. 6, pp. 385-412.
- [5] Richard G. Budynas (1977), Advanced Strength and Applied Stress Analysis. McGraw Hill, Tokyo.
- [6] J.M. Gere (2004), *Mechanics of Materials, 6th Edition*. Thomson Learning, Inc., New York.