
Jurnal Rekayasa Elektrika Vol. 11, No. 1, April 2014, hal. 15-18

ISSN. 1412-4785; e-ISSN. 2252-620x

15

FPGA Implementation of Uniform Random

Number based on Residue Method

Zulfikar
Electrical Engineering Department, Faculty of Engineering, Syiah Kuala University

Jl. Tgk. Syech Abdul Rauf No. 7, Darussalam, Banda Aceh 23111
e-mail: zulfikarsafrina@yahoo.co.id

Abstract—This paper presents the implementation and comparisons of uniform random number on Field Programable

Gate Array (FPGA). Uniform random numbers are generated based on residue method. The circuit of generating

uniform random number is presented in general view. The circuit is constructed from a multiplexer, a multiplier,

buffers and some basic gates. FPGA implementation of the designed circuit has been done into various Xilinx chips.

Simulation results are viewed clearly in the paper. Random numbers are generated based on different parameters.

Comparisons upon occupied area and maximum frequency from different Xilinx chip are examined. Virtex 7 is the

fastest chip and Virtex 4 is the best choice in terms of occupied area. Finally, Uniform random numbers have been

generated successfully on FPGA using residue method.

Keywords: FPGA implementation, random number, uniform random number, residue method, Xilinx chips

Abstrak—Paper ini memaparkan implementasi dan perbandingan dari bilangan random uniform pada Field

Programable Gate Array (FPGA). Bilangan-bilangan random dibangkitkan dengan menggunakan metode residue.

Rangkaian untuk membangkitkan bilangan random disajikan disini secara umum. Rangkaian tersebut tersusun

dari sebuah multiplexser, sebuah multiplier, beberapa buffer dan beberapa gerbang logika dasar. Implementasi

pada FPGA dari rangkaian yang telah dirancang telah dilakukan terhadap beberapa variasi chip dari Xilinx.

Hasil-hasil simulasi ditampilkan secara mendetail di dalam tulisan ini. Bilangan-bilangan random dibangkitkan

dengan menggunakan parameter yang berbeda-beda. Perbandingan terhadap area yang dibutuhkan dan frekuensi

maksimum dari berbagai jenis chip Xilinx diteliti. Dalam hal kecepatan, Virtex 7 merupakan pilihan yang terbaik,

sementara Virtex 4 lebih optimal dalam hal area yang dibutuhkan. Sehingga dapat disimpulkan bahwa bilangan

random uniform telah berhasil dibangkitkan pada FPGA dengan metode residue.

Kata kunci: Implementasi FPGA, bilangan random, bilangan random uniform, metode residue, chip-chip Xilinx

I. IntroductIon

Random numbers are used almost in all computer

simulations to generate random numbers or samples. The

random numbers need to mimic a real condition of any

input to computer programs. Uniform random number is

the mostly wide used because it is very simple.

Nowadays, many electronic applications do not require

a computer or a processor. They have been replaced by an

embedded integrated circuit (IC) containing real circuits

instead of programs. The applications able to perform

tasks faster and more efficient.
Many applications using embedded IC require random

numbers. The real circuit for generating random numbers

have been proposed [1]-[5].

 In this work, we proposed a very simple circuit to
generate uniform random numbers. The circuit has been

designed based on residue method. The idea has been

initialized using Matlab code [6]. The randomness and

repetition of numbers generation has been tested using chi-

square formulated in [7].
The rest of the paper is organized as follows. Section

II deals with theory of how to generate random numbers

using residue method. The circuit design is viewed and

explained deeply in section III. The next section provides

implementations results and a few discussions of this.

Conclusions are presented in section IV.

II. Background

In general, the probability density function (pdf) of

uniform random number variables is given by Eq. (1)

[7],[8]:

f x b a
a x b

x a x b

()

,

= −
≤ ≤

< >

1

()
 ,

 and 0
()1

Uniform distribution of the generated random number

is shown in Fig. 1. The numbers between a and b with

magnitude 1/(b-a) and the total area of the distribution is 1.

There is a well-known method commonly used to
generate random numbers uniformly called residue

16 Jurnal Rekayasa Elektrika Vol. 11, No. 1, April 2014

method. The idea of the method is by taking modulo of
generated sequence random numbers [9].

X aX b m
n n+

= +1 2() mod ()

Parameters multiplication factor a, b and m have to

be chosen carefully in order to avoid repetition of similar

numbers before m. Usually, good results can be obtained

by choosing b=0 [9]-[11]. Meanwhile seed (X) should be

different every time random numbers are generated.

For instance, with a = 13, c = 0, m = 31, and seed = 1,
the sequence begins with 1, 13, 14, 27, 10, 6, 16, 22, 7, 29,
5, 3,
The next value looks a bit unpredictable, but it can compute
(13 x 3 = 39) mod 31, which is 8 [12].

III. Method

Fig. 2 shows designed circuit to generate uniform
random number based on residue method. In the design, it

is assumed that b=0. The circuit consist of a multiplexer, a

multiplier, two AND gate, a buffer (required clear) and two

buffers (required enable). The circuit requires initial value

seed given from outside. Input A_in is used to provide

a multiplication factor. Random numbers are produced

serially through port named Output. Port seed is used for

initial value and only given one at the beginning. Port A_in

is used to pass multiplication value into the circuit.

The circuit also equipped with two control signals

which are enable and reset. Signal enable control the start

operation of the circuit. Initially signal reset have to be

HIGH (enable=LOW) to clear all previous stored values

in the buffers. Pre-defined value of seed and A_in have to
be available at the input ports before enable goes HIGH

(reset=LOW). After this, every times clock goes HIGH, a
random number produced at the output port.

IV. results and dIscussIons

The implementation of the designed circuit is targeted

to various Xilinx FPGA chips. Four chips have been

selected for this purpose; Spartan 3, Spartan 6, Virtex 4
and Virtex 7.

Figs. 3 and 4 show behavior simulation results of
uniform random number generator using 4 bit and 8 bit
respectively. Both of the implementations using seed=3
and a=2. The numbers resulted from these implementations

Fig. 1. Uniform random variable distribution

Fig. 4. Behavior simulation of the designed 8 bit uniform random number
generator (seed=3, a=2)

Fig. 3. Behavior simulation of the designed 4 bit uniform random number
generator (seed=3, a=2)

Fig. 2. Design of uniform random number generator based on residue method (b=0)

17Zulfikar: FPGA Implementations of Uniform Random Number based on Residue Method

are not repeated, also they produced few numbers only.

Another simulation (Fig. 5) has been done of 8 bit
generator using seed=7 and a=3. It produced more random
numbers compare than the previous simulations. Moreover,

the numbers are repeated after a very long period.

Therefore, the randomness and the amount of number

produced are depend on seed and initial multiplication

factor a.

Table 1 shows speed comparisons in terms of

maximum frequency that might be achieved for Spartan

3, Spartan 6, Virtex 4 and Virtex 7. It can be seen that
the maximum frequency decreased as the wordlengths

increased. The fastest random number produced is when

it is implemented into Virtex 7, it would be reached over
700 MHz (wordlengths = 4 bit). Conversely, Spartan
3 is the slowest chip of the designed random numbers
implementations.

In term of occupied area that is represented by the

amount of required slices, it is varied. For wordlengths =

4 bit, Spartan 3 chip requires only 6 slices which is around
a half of the slices required when the circuit implemented

into Spartan 6 and Virtex 7. However, in this case, Virtex 4
is the best chip for random number implementation. All of

these can be seen in the Table 2.
Figs. 6 and 7 show other views of speed representation.

The graphs provide a more clear figures of speed variation.
For implementation into Virtex 7, it can be seen that the
speed reduces significantly when wordlengths increased
from 4 bit to 8 bit. Changing wordlengths from 8 bit to 16

bit did not have significant impact to the speed.
Figs. 8 and 9 provide information about area occupies

in different ways. For Virtex 4 implementation using
wordlengths 4 bit and 8 bit, the area required is equal. As
stated before, Virtex 4 is the best chip for random number

Table 1. Speed comparisons of various Xilinx chips implemented

overrent wordlengths

Maximum Frequency (MHz)

4 bit 8 bit 16 bit 24 bit 31 bit

Spartan 3 216 198 172 75 84

Spartan 6 372 209 209 81 81

Virtex 4 381 216 216 120 120

Virtex 7 737 270 270 208 163

Table 2. Occupied area (slice) comparisons of various Xilinx chips
implemented over four different wordlengths

Occupied Area (Slices)

4 bit 8 bit 16 bit 24 bit 31 bit

Spartan 3 6 13 26 49 67

Spartan 6 11 16 30 48 62

Virtex 4 9 9 17 28 36

Virtex 7 11 16 30 48 62

Fig. 5. Behavior simulation of the designed 8-bit uniform random number generator (seed = 7, a = 3)

Fig. 6. Speed comparisons of the designed generator for various Xilinx

chips

Fig. 7. Speed comparisons of the designed generator implemented using 4
bit, 8 bit, 16 bit, 24 bit, and 31 bit

Fig. 8. Area comparisons of the designed generator for various Xilinx
chips

18 Jurnal Rekayasa Elektrika Vol. 11, No. 1, April 2014

implementation, this figure is shown clearly in the Fig. 9.
Some other implementation data of the designed

circuit to Xilinx Virtex 7 using wordlengths = 8 about area
occupation and maximum frequency are:

======================================

Macro Statistics

Multipliers : 1

 8x8-bit multiplier : 1
Registers : 24
 Flip-Flops : 24
Multiplexers : 1

 8-bit 2-to-1 multiplexer : 1
======================================

 Slice Logic Utilization:

 Number of Slice Registers: 16 out of 437600 0%
 Number of Slice LUTs: 10 out of 218800 0%
 Number used as Logic: 10 out of 218800 0%

 Number of LUT Flip Flop pairs used: 17
 Number with an unused Flip Flop: 1 out of 17 5%
 Number with an unused LUT: 7 out of 17 41%
 Number of fully used LUT-FF pairs: 9 out of 17 52%
 Number of unique control sets: 2

 IO Utilization:

 Number of IOs: 27
 Number of bonded IOBs: 25 out of 300 8%

 Specific Feature Utilization:
 Number of BUFG/BUFGCTRLs: 1 out of 32 3%
 Number of DSP48E1s: 1 out of 840 0%
==

Timing Summary:

Speed Grade: -2
 Minimum period: 3.710ns (Maximum Frequency: 269.513MHz)
 Minimum input arrival time before clock: 1.189ns
 Maximum output required time after clock: 0.575ns
 Maximum combinational path delay: No path found

======================================

It can be seen from the synthesis result into Virtex 4,
the designed circuit requires only use some part of logic

cells (LCs). The chip has (digital signal processing) DSP,

but the designed circuit do not require any DSP at all.

V. conclusIons

FPGA implementation of uniform random number

based on residue method has been demonstrated on various

Xilinx chips. The circuit for FPGA implementation has

been proposed using a multiplexer, a multiplier, two AND

gates, and three buffers. The randomness and repetition of

produced uniform numbers vary depending on selection

values of seed and multiplication factor a.

The implementations have been done over four

different wordlengths (4 bit, 8 bit, 16 bit and 31 bit). Virtex
7 achieved highest maximum frequency 737 MHz using
wordlengths = 4 bit. In terms of area occupation, Virtex 4
is the best choice except for wordlengths = 4.

references

[1] T. Jennuwein and U. Achleitner, “A fast and compact quantum

random number generator,” American Institute of Physics, Vol.

71, No. 4, 2000.

[2] K. H. Tsoi, and K. H. Leung, “Compacted FPGA-based and

Pseudo Random Generators”, Proc. of the 11th Annual IEEE

Symposium on Field-Programmable Custom computing

Machines (FCCM’03), 2003

[3] V. Fischer and M. Drutarovsky, “True random number generator
embedded in reconfigurable hardware”, Proceding of CHES 2002,
LNCS 2523, pp. 415-430, 2003

[4] H. M. K. Sammy, Y. L. Edmund, “FPGA-based High-speed True

Random Number Generator for Cryptographic Applications,”

Proceding of IEEE TENCON 2006, pp. 1-4, November 2006.

[5] J. Kumar, S. Shukla, D. Prakash, P. Mishra, and S. Kumar,
“Random Number Generator Using Various Techniques through

VHDL,” Transaction of International Journal of Computer

Applications in Engineering Sciences, Vol I, Issue II, June 2011.

[6] Zulfikar, “Generating Non Uniform Random Numbers Using
Residue and Rejection Methods,” Journal Rekayasa Elektrika,
Vol. 8 No. 2, October 2009.

[7] A. L. Garcia, “Probability and Random Process for Electrical

Engineering,” 2nd ed, Addison-Wesley Publishing Company,
1994.

[8] M. Evans, N. Hasting, and B. Peacock, Statistical Distributions,
3rd ed, Wiley series in probability and statistic, 2000.

[9] R. Halprin, M. Naor, “Games for Extracting Randomness,”

Weizmann Institute of Science. 2009.

[10] G. J. Chaitin, “Exploring Randomness,” Springer Publishing,

London, 2001.

[11] S. K. Park and K. W. Miller, “Random Number Generators: Good
Ones Are Hard to Find,” Communication of the ACM, Vol. 31
pp. 1192-1201, 1988.

[12] C. B. Moler, Numerical Computing with MATLAB, SIAM, 2008.

Fig. 9. Area comparisons of the designed generator implemented using 4
bit, 8 bit, 16 bit, 24 bit, and 31 bit

