PENGARUH PERBEDAAN MACHINE MODEL HEAVY EQUEPMENT TERHADAP NILAI MECHANICAL AVAILABILITY

(Studi Kasus Pada PT. X Perusahaan Tambang Batubara)

M. Syafwansyah Eff ⁽¹⁾, Ahmad Hendrawan⁽¹⁾, Rabiatul Adawiyah⁽¹⁾

(1) Staf Pengajar Prodi Teknik Alat Berat Politeknik Negeri Banjarmasin

Ringkasan

Berdasarkan pada penelitian-penelitian terdahulu yang berkaitan dengan kajian mechanical availablity lebih banyak pada mesin-mesin industri dan belum banyak yang mengkaji masalah ini yang berhubungan dengan alat berat yang dioperasikan di pertambangan. Sehingga pada permasalahan ini adalah bagaimana pengaruh dari berbagai macam model alat berat terhadap nilai mechanical availability, serta untuk melihat jenis model mana yang mempunyai nilai Mechanical Availablity yang paling besar. Data diambil dari data History Preventive Maintanance pada sebuah perusahaan tambang di Kalimantan Selatan, selama periode 3 tahun. Pengujian data dengan menggunakan uji Posteriori (Post Hoc) untuk melihat model machine mana yang mana dari rata-ratanya nilai mechnalical availability adalah paling kuat berbeda.

Berdasarkan hasil pengujian statistik uji ANOVA dengan uji F dan hasil analisis Linier Contrast menunjukkan kesimpulan bahwa rata rata nilai mechanical availability dari kesebelas model unit dalam sama. Sehingga uni Posteriori (Post Hoc) tidak bisa dilaksanakan.

Kata Kunci : Mechanical Availability, Model Unit, Post Hoc

1. PENDAHULUAN

Latar Belakang

Availability didefinisikan sebagai peluang sebuah komponen atau sistem dapat bekerja sesuai dengan fungsi yang dibutuhkan pada waktu tertentu yang berada pada kondisi (Ebeling, 1197), yang juga bisa normal diartikan sebagai jumlah waktu dikurangi dengan waktu yang dibutuhkan melakukan perawatan dan perbaikan. Tingkat ketersediaan atau availability ini dipengaruhi oleh nilai interval penggantian dan perbaikan Availability dan reliability suatu peralatan terutama heavy equepment sebagai penentu performance tingkat heavy equepment tersebut. Jika reliability dan availability suatu sistem rendah, maka usaha untuk meningkatkannya kembali adalah dengan menurunkan laju kegagalan meningkatkan efektifitas perbaikan terhadap tiap-tiap komponen atau sistem. Ukuran reliability dan availability dapat dinyatakan sebagai seberapa besar kemungkinan suatu sistem tidak akan mengalami kegagalan dalam waktu tertentu, berapa lama suatu sistem akan beroperasi dalam waktu tertentu dan berapa cepat waktu yang dibutuhkan untuk memulihkan kondisi sistem dari kegagalan yang terjadi. Sedangkan Rahmad

et al (2012) menerangkan bahwa availability merupakan suatu rasio yang menggambarkan pemanfaatan waktu yang tersedia untuk kegiatan operasi mesin atau peralatan. Availability merupakan rasio dari operation time, dengan mengeliminasi downtime peralatan, terhadap loading time. Rendahnya nilai availability dipengaruhi oleh besarnya total downtime losses

Hal yang berkaitan dengan Availability dan reliability tersebut diatas bergantung kualitas dari kegiatan *maintenance*, yang mana menurut Hadi dalam Eko Nursubiyantoro dan (2012)Triwiyanto maintenance didefinisikan sebagai suatu kegiatan merawat fasilitas sehinga peralatan tersebut berada dalam kondisi yang layak pakai. Hal ini bertujuan untuk menghindari terjadinya failure atau kerusakan secara mendadak pada mesin saat sedang berproses. Secara umum perawatan mempunyai tujuan pertama memungkinkan tercapainya mutu produksi kepuasan pelanggan melalui penyesuaian, pelayanan, dan pengoperasian tepat, peralatan secara kedua memaksimalkan umur kegunaan dari sistem, ketiga menjaga agar sistem aman mencegah berkembananya gangguan keamanan. keempat meminimalkan frekuensi kuatnya gangguan terhadap proses operasi.

Kelima meminimalkan biaya produksi total yang secara langsung dapat dihubungkan dengan service dan perbaikan, keenam memaksimalkan produksi dari sumber-sumber sistem yang ada, dan ketujuh menyiapkan personel, fasilitas, dan metode-metodenya agar mampu mengerjakan tugas-tugas perawatan.

Penelitian yang berhubungan dengan mechanical availability telah dilakukan seperti yang dilakukan oleh Ivan Soesetyo (2014) Penjadwalan Predictive Maintenance dan Biaya Perawatan Mesin Pellet di PT. Charoen Pokphand Indonesia. Syafwansyah (2015) Pengaruh rata-rata Nilai Risk Priority Number Pada Faiure Mode and Effect Analysis terhadao availability Unit Cat OHT 777 D, Eirik Homlong, (2010) Dalam Tesisnya Reliability, Availability, Maintainability and Supportability factors in an Arctic offshore operating environment: Issues and challenges,

Permasalahan

Berdasarkan pada penelitian-penelitian terdahulu yang berkaitan dengan kajian mechanical availablity lebih banyak pada mesin-mesin industri dan belum banyak yang mengkaji masalah ini yang berhubungan dengan alat berat yang dioperasikan di pertambangan. Sehingga pada permasalahan ini adalah sangat menariki untuk mengetahui bagaimana pengaruh dari berbagai macam model alat berat terhadap nilai mechanical availability, serta untuk melihat jenis model mana yang mempunyai nilai Mechanical Availablity yang paling besar.

Pada penelitian ini, berdarkan permasalahan yang mendasar tersebut diatas adalah untuk menguji apakah ada perbedaan dalam nilai mechanical availability dari beberapa jenis model unit alat berat. Unit yang diuji adalah produk Caterpillar yang dipunyai dan dioperasikan di PT X sebagai berikut: . Selanjutnya sistem manakah yang mempunyai RPN tertinggi

Tujuan

Tujuan dari penelitian ini adalah untuk mengetahui apakah ada pengaruh dari perbedaan model mechine dari alat berat tersebut terhadap nilai mechanical availabilitinya. Seperti yang yang sudah diketahui bahwa alat berat ini banyak diaplikasi pertambangan batubara di khususnya di Kalimantan Selatan Sehingga hasil dari pengujian ini bisa sabagai justifikasi untuk menentukan model unit mana yang mempunyai mechanical availability yang paling tinggi, sehingga bisa sebagai referensi

untuk mengambil kebijakan dan pertimbangan dalam preventive maintanance dari unit..

Hipotesis dalam pengujian ini dirumuskan sebagai berikut :

Hipotesis untuk *Homogenitas Varians* $H_0:\sigma_1=\sigma_2=\sigma_3=\sigma_4=\sigma_5=\sigma_6=\sigma_7=\sigma_8=\sigma_9=\sigma_{10}=\sigma_{11}$

H₁: Satu atau lebih pasangan varians yaitu nilai mechanical availability adalah berbeda

Hipotesis untuk perbedaan rata-rata $H_0:\mu_1=\mu_2=\mu_3=\mu_4=\mu_5=\mu_6=\mu_7=\mu_8=\mu_9=\mu_{10}=\mu_{11}$

H₁: Satu atau lebih pasangan varians ratarata yaitu nilai rata-rata mechanical availabilty adalah berbeda

2. LANDASAN TEORI

Mechanical Availability (MA)

Dari teori pendukung yang ada, dapat dibuat suatu analisa hubungan antara dasar teori dengan permasalahan yang mana nilai Mechanical Availability (MA) sangat penting untuk meningkatkan keuntungan, karena seperti yang digambarkan pada skala prioritas. Jika kesiapan alat tinggi, maka produktivitas tinggi. Adapun faktor yang menyebabkan menurunnya nilai *Mechanical* Availability (MA) yaitu nilai total downtime yang terdiri dari : unschedule breakdown, PM, PCR. Apabila kita dapat mengurangi dan mencegah terjadinya unschedule breakdown. maka nilai Mechanical Availability (MA) akan tetap tinggi. Mechanical Availability (MA) dapat dihitung dengan menggunakan formula

$$MA\% = \frac{Operating\ Hours}{Operating\ Hours + Total\ Downtime} x\ 100\%\ (1)$$

Dalam penggunaan alat ukur Mechanical Availability (MA) ini memiliki beberapa keterbatasan. Keterbatasan ini menyebabkan Mechanical Availability (MA) lebih berfungsi sebagai indikator saja dibanding sebagai alat pengukuran atau benchmark. Keterbatasan pertama muncul dikarenakan terdapat beberapa formula dan metoda perhitungan Mechanical Availability (MA) yang berbeda beda. Sebagai hasilnaya maka Mechanical Availability (MA) ini akan lebih efektif apabila digunakan sebagai benchmark internal saja (dimana tentunya metoda perhitungan bisa diseragamkan dan selalu konsisten) dibandingkan alat pembanding Mechanical Availability (MA) antara perusahaan (karena ada kemungkinan formula yang digunakan berbeda). Keterbatasan yang kedua adalah

karena informasi yang diberikan oleh *Mechanical Availability (MA)* sendiri kurang memadai, *Mechanical Availability (MA)* memberikan gambaran hubungan antara dua faktor tetapi satuan *Mechanical Availability (MA)* sendiri jadi tak berguna apabila tidak dilengkapi dengan informasi tambahan mengenai dua faktor tersebut

Konsep Availability (Ketersediaan)

Ketersediaan dapat didefinisikan sebagai probabilitas suatu sistem beroperasi sesuai fungsinya dalam suatu waktu tertentu dalam kondisi operasi yang telah ditetapkan (Ebeling, 1997). Sehingga ketersediaan merupakan fungsi dari suatu siklus waktu operasi (reliability) dan waktu downtime (maintainability).

Mean Time To Repair (MTTR)

Ada beberapa cara pengukuran keterawatan, namun yang paling sering digunakan dan yang akan dibahas pada bagian ini adalah *Mean Time To Repair* (MTTR). Secara umum waktu perbaikan dapat diberlakukan sebagai variabel random karena kejadian yang berulangulang dapat mengakibatkan waktu

perbaikan yang berbeda-beda. MTTR diperoleh dengan menggunakan rumus (Ebeling, 1997):

$$MTTR = \int_{0}^{\infty} t. h(t)dt = \int_{0}^{\infty} (1 - H(t))dt$$
 (2)

Dimana

h(t) adalah fungsi kepadatan peluang untuk waktu perbaikan

H(t) adalah fungsi distribusi kumulatif untuk data waktu perbaikan t adalah waktu

Reveiw Penelitian Terdahulu

Eko Nursubiyantoro dan Triwiyanto (2012) , Melakukan Sistem Manajenen Perawatan Unit MMU *Pump* dan *Oil Shipping Pump*,. Hasil akhir dari penelitian ini menghasilkan *Mean Time Between Failure (MTBF), Mean Time Between Run (MTTR)*, kehandalan mesin (Availability) yang besarnya menunjukkan data kerusakan mesin, waktu perawatan dan kehandalan mesin dari masing-masing mesin.

Ivan Soesetyo dan Liem Yenny Bendatu (2014) Dalam penelitiannya Penjadwalan *Predictive Maintenance* dan Biaya Perawatan Mesin Pellet di PT Charoen Pokphand Indonesia - Sepanjang, Tujuan yang ingin dicapai dalam penelitian ini untuk meningkatkan *availability* dan *reliability* mesin pellet dengan memperhatikan total biaya minimum.

Much. Djunaidi dan Mila Faila Sufa 2007, Dalam penelitiannya Usulan Interval Perawatan Komponen Kritis Pada Mesin Pencetak Botol (*Mould Gear*) Berdasarkian Kriterias Minimasi *Downtime*, dimana tujuan penelitian adalah Usulan dalam perawatan pencegahan ini difokuskan pada komponen kritis pada *mould gear*, Hasil dari penelitiannya meningkatkan nilai availability dari *mould gear* sebesar 86.287 %...

Eirik Homlong, (2010) Dalam Tesisnya Reliability, Availability, Maintainability and Supportability factors in an Arctic offshore environment: operatina Issues challenges, dimana tujuan dari penelitiannya menyoroti mengenai tantangan operasi dan pemeliharaan instalasi produksi lepas pantai di daerah Kutub Utara. Tantangan ke Keandalan, Ketersediaan. Hasil penelitian menunjukkan bahwa perawatan pencegahan akan menganggap lebih penting dalam menjaga keteraturan tinggi dan menurunkan risiko melalui perbaikan, menilai keadaan peralatan dan faktor degradasi pemetaan

3. METODOLOGI

Sumber data

Data diambil dari data History Preventive Maintanance pada sebuah perusahaan tambang di Kalimantan Selatan, selama periode 3 tahun, unit yang analisa merupakan produk dari caterpillar yang meliputi Dozer model D9R, Compactor moel CS533, Motor Grader Model 14M, 160H dan 16H, Excavator Model 336DL, 320C, dan 330C, OHT (Off Highway Truck) model 773D, 773E dan 777D.

Pengolahan data

Untuk melakukan pengujian terhadap perbedaan rata-rata, harus diuji apakah varian dari variabel adalah sama. Setelah diketahui bahwa data memenuhi asumsi homogentias varian, baru kemudian melakuan uji *ANOVA* dengan menggunakan uji F. Jika diperoleh hasil adanya perbedaan rata-rata, dilakukan analisis untuk setiap kelompok rata-rata atau pasangan rata-rata...

Pengujian data dengan menggunakan uji Posteriori (Post Hoc) untuk melihat model machine mana yang mana dari rata-ratanya nilai mechnalical availability adalah paling kuat berbeda.

4. PENGOLAHAN DAN ANALISIS DATA

Rekapitulasi Data

Data diambil dari History Preventive Maintanance selama selang tiga tahun kemudian masing-masing unit kesuluruhan yang dipunyai dan dioperasikan di PT X dihitung rata-rata Mechanical Availability tiap tahun sebagaimana tabel (1) berikut:

Tabel 1. Rekapitulasi Data Nilai Mechanical Availablity

Tahun	D9R	CS533	14M	160H	16H	336DL	320C	330C	773D	773E	777D
2011	58,40	25,00	69,26	59,77	72,68	60,42	43,29	50,59	57,65	67,96	65,73
2012	47,58	41,07	58,56	55,13	50,55	45,68	48,78	39,76	50,07	48,96	55,81
2013	47,26	15,00	42,63	24,16	14,29	40,08	31,4	23,66	41,32	47,12	48,63

Keterangan

D9R Dozer, CS533 Compactor, 14M, 160H dan 16 H Motor Grader, 336DL, 320C dan 330C Excavator, 773D 773D dan 777D OHT

Pengolahan dan Analisa Data

Pengujian data dengan *Posteriori (Post Hoc)*. Pengujian yang digumakan adalah uji *Tukey HSD* dan *Duncan*. Hal in karena Hipotesis diambil setelah data dikumpulkan dan diperiksa awal. Jadi untuk melakukan pengujian seperti ini yang digambarkan adalah pengujian *Posteriori* atau *Post Hoc*.

Uji *Tukey* atau disebut juga *Tukey Honestly Significant Difference (HSD)* merupakan pengjujian perbadningan berbagai kelompok rata-rata. Uji *Tukey* menggunakan statistik *range studentized* untuk membuat

semua perbandingan berpasangan antar group dan menentukan kesalahan kelompok percobaan untuk membuat perbandingan berpasangan.

Uji range Duncan juga digunakan untuk menguji perbandingan berpasangan antar beberapa rata-rata. Sehingga dengan uji ini bisa ddiketahui kelompok rata-rata mana yang berbeda dan kelompok yang berisi variabel yang sama. Hasil pengjujian dengan bantuan SPSS 19 didapat hasil sebagai berikut

Descriptives

Mechanical Availablity

	N	Maan	Std.	Std. Error	95% Co Interval f	nfidence for Mean	Minimum	Maximum
	IN	Mean	Deviation		Lower	Upper		
					Bound	Bound		
D9R	3	51,0800	6,34132	3,66117	35,3273	66,8327	47,26	58,40
CS533	3	27,0233	13,15225	7,59345	-5,6487	59,6953	15,00	41,07
14M	3	56,8167	13,40032	7,73668	23,5284	90,1049	42,63	69,26
160H	3	46,3533	19,35950	11,17722	-1,7383	94,4450	24,16	59,77
16H	3	45,8400	29,47857	17,01946	-27,3888	119,0688	14,29	72,68
336DL	3	48,7267	10,50669	6,06604	22,6266	74,8267	40,08	60,42
320C	3	41,1567	8,88422	5,12931	19,0870	63,2263	31,40	48,78
330C	3	38,0033	13,55067	7,82348	4,3416	71,6651	23,66	50,59
773C	3	49,6800	8,17198	4,71810	29,3797	69,9803	41,32	57,65
773D	3	54,6800	11,53756	6,66121	26,0191	83,3409	47,12	67,96
777D	3	56,7233	8,58651	4,95742	35,3933	78,0534	48,63	65,73
Total	33	46,9167	14,73074	2,56429	41,6934	52,1400	14,29	72,68

Test of Homogeneity of Variances

Mechanical Availablity

Levene Statistic	df1	df2	Sig.	
1,529	10	22	,195	

ANOVA

Mechanical Availablity

	Sum of				
	Squares	df	Mean Square	F	Sig.
Between Groups (Combined)	2377,626	10	237,763	1,146	,375
Linear Term Contrast	251,607	1	251,607	1,212	,283
Deviatio	n 2126,018	9	236,224	1,138	,379
Within Groups	4566,209	22	207,555		
Total	6943,835	32			

Hasil perhitungan uji homogenitas varians dengan Levene Statistik adalah 1,529 dengan nilai sig sebesar 0,195, . Uji homogenitas varians adalah pengujian terhadap asumsi dalam uji ANOVA, yaitu homogenitas dari varians. Karena nilai Sig yang lebih besar dari level kepercayaan maka keputusan yang diambil adalah menerima H_{o} Itu berarti varians dari nilai mechanical availability ke sebelas model unit alat berat tersebut adalah sama. Dengan hasil tersebut maka pengujian ANOVA dengan menggunakan uji F bisa dilakukan.

Hasil pengujian ANOVA dengan menggunakan uji F menunjukkan nilai F hitung sebesar 1,146 dengan sig 0,375. Jika kita bandingkan dengan F tabel dimana nilai F tabel dengan df $_1$ 10 dan df $_2$ 22 diperoleh F tabel = 2,30. Dengan membandingkan nilai F hitung dengan F tabel, atau dengan melihat nilai Sig yang lebih besar dari alpha (5%) kesimpulan yang diperoleh adalah menolah menerima H_0 yang berarti rata-rata nilai mechanical availability untuk masing-masing model unit adalah sama.

Dilihat dari hasil analisis Linier Contrast, diperoleh nilai F sebesar 1,212 dengan Sig ,0,283. Dengah hasil tersebut dapat diambil kesimpulan bahwa rata-rata nilai mechanical availability untuk ke sebelas model unit adalah sama.

Berdasarkan hasil uji ANOVA ini, maka untuk uji LSD, Bonferoni serta uji Tukey tidak perlu dilaksanakan.

5. PENUTUP

Kesimpulan

Dari hasil analisis statistik dengan uji ANOVA diambil kesimpulan bahwa rata-rata nilai mechanical availabity dari kesebelas model unit yang meliputi Dozer Model D9R, Compactor Model CS533, Motor Grader Model 14M, 160H dan 16 H, Excavator, Model 336DL, 320C dan 330C, OHT(Off Highway Truck) Model 773D 773D dan 777D

Adalah sama, sehingga pengujian selanjutnya secara statistik untuk mencari yang paling tinggi nllai mechanical availabilty nya tidak perlu lagi dilaksanakan.

Saran

Kelemahan dalam penelitian ini adalah jumlah data yang masih minimal, sehingga perlu dilakukan kajian yang lebih mendalam dengan data yang labih lebih banyak tidak hanya di satu perusahaan

6. DAFTAR PUSTAKA

- [1] Eko Nursubiyantoro dan Triwiyanto, 2012, Sistem Manajemen Perawatan Unit MMU Pump dan Oil Shipping, *Industrial Engineering Conference (IEC)*, pp 53.7– 53.7
- [2] Ebeling, Charles E., An Introduction to Reliability and Maintainability Engineering. McGraw-Hill Book, Singapore, 1997
- [3] Eirik Homlong, 2010, Reliability, Availability, Maintainability and Supportability factors in an Arctic offshore operating environment: Issues and challenges, Master Thesis, Faculty of Science and Technology, University of Stavanger, Norway
- [4] Ivan Soesetyo1, Liem Yenny Bendatu, 2014 Penjadwalan Predictive Maintenance dan Biaya Perawatan Mesin Pellet di PT. Charoen Pokphand Indonesia Jurnal Titra, Vol. 2, No.2, Juni 2014, pp. 147 -154
- [5] Mobley, R.K. (1990). An introduction to predictive maintenance, New York, Van Nostrand Reinhold, USA
- [6] Markeset, T. (2008). Design for Production Performance in Arctic Locations Considering Maintenance and Support Services, In the Proceedings of the Mine Planning and Equipment Conference (MPE2008), October 20-22nd Beijing, China
- [7] M. Syafwansyah Effendi, Noor Rahman, M. Taufik, 2014, Pengaruh Rata-rata Nilai Risk Priority Number Pada Failure Mode And Effect Analysis Terhadap Avaiability

- Unit OHT 773D CAT *Jurnal* POROS TEKNIK, Volume 6, No. 2, Desember 2014 :96-102
- [8] Much. Djunaidi dan Mila Faila Sufa, 2007, Usulan Interval Perawatan Komponen Kritis Pada Mesin Pencetak Botol (Mould Gear) Berdasarkian Kriterias Minimasi Downtime, *Jurnal Teknik Gelagar*, Vol. 18, No. 01, pp 33 – 41
- [9] Rahmad, Pratikto, Slamet Wahyudi, , 2012, Penerapan Overall Equipment Effectiveness (Oee) Dalam Implementasi Total Productive Maintenance (TPM) (Studi Kasus di Pabrik Gula PT. "Y".), Jurnal Rekayasa Mesin Vol.3, No.3, pp 431-437