
Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022

Yogyakarta, 17 Juni 2006

MUTUAL EXCLUSION VERIFICATION OF PARAMETERIZED READER-

WRITER ALGORITHM: A CASE STUDY

Cecilia E. Nugraheni

Computer Sciece Department, Parahyangan Catholic University

Jl. Ciumbuleuit 94 Bandung 40141

E-mail:cheni@home.unpar.ac.id

ABSTRACT

 This paper presents the verification of mutual-exclusion properties of parameterized reader-writer

algorithm. A class of diagram called Predicate diagrams [1] is used for representing the abstractions of

parameterized systems described by specifications written in TLA. The verification is done by integrating

deductive verification and algorithmic techniques. The correspondence between the original specification and

the diagram is established by non-temporal proof obligations. Whereas model checker SPIN [3] is used to verify

properties over finite-state abstractions.

Keywords: formal method, verification, parameterized system, temporal logic.

1. INTRODUCTION

Verification consists of establishing whether
a system satisfies some property, that is, whether all
possible behaviors of the system are included in the
property specified. There are basically two
approaches to formal verification, which are the
deductive approach and the algorithmic approach.
The deductive approach is based on verification

rules, which reduces the system validity of a
temporal property to the general validity of a set of
first-order verification conditions. The most popular
algorithmic verification method is model checking.
Although this method is fully automatic for finite-
state systems, it suffers from the so-called state-

explosion problem.
A parameterized parallel system, or a

parameterized system for short, consists of several
similar processes whose number is determined by an
input parameter. Many interesting systems are of
this form, for example, mutual exclusion algorithms
for an arbitrary number of processes wanting to use
a common resource. To provide methods for the
uniform verification of such systems is a challenging
problem. The key to such a uniform treatment is
parameterization, i.e. presenting a single syntactic
object that actually represents a family of objects.

In the context of parameterized systems, the
ability to conduct a uniform verification of a
parameterized system is one of the striking
advantages of the deductive method for temporal
verification over algorithmic techniques such as
model-checking techniques. In general, nothing can
be concluded about the property holding for any
value of n from the fact that it holds for some finite
set of values. In comparison, the deductive method
establishes in one fell swoop the validity of the
property for any value of n [5,2].

The need for a more intuitive approach to
verification leads to the use of diagram-based

formalisms. Usually, these diagrams are graphs
whose vertices are labeled with first-order formulas,

representing sets of system states, and whose edges
represent possible system transitions. This approach
combines some of the advantages of deductive and
algorithmic verification: the process is goal-directed,
incremental and can handle infinite-state systems.

This paper presents the verification of mutual
exclusion properties of parameterized reader-writer
algorithm. This algorithm can be considered as a
parameterized system, since it can handle arbitrary
numbers of readers and writers.

We used the diagram-based method. In
particular, we adopted the approach proposed by
Cansell et.al. In [1] they presented a class of
diagrams called predicate diagrams and showed how
the using of these in formal verification. We made a
little modification of the definition of the original
predicate diagrams, in particular the definition
related to the actions. Instead of actions, we
concentrate only on parameterized actions which are
actions of the form A(k). This form of actions is
usually used in modeling actions of a particular
process in the system. We use TLA* [6] to formalize
our approach and use TLA+ style [4] for writing
specifications.

This paper is structured as follows. We begin
with the informal description of reader-writer
algorithm. Section 2 explains briefly the formal
specification of parameterized systems in TLA*.
Section 3 describes the definition and the use of
predicate diagrams in the verification of
parameterized systems. The solution of the case
study is presented in Section 4. Finally, conclusion
and future work will be given in Section 5.

2. PARAMETERIZED READER-WRITER

ALGORITHM

The protocol is expressed in terms of four
sets that contain (the identities of) currently active
readers, waiting readers, active writers and waiting
writers. All the sets are initially empty. Assume
there are M processes running in the systems. Every

 L-1

Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022

Yogyakarta, 17 Juni 2006

process in the system can perform the following
actions:
• ImmRd(k): Process k signals its desire to read. If

there are no active or waiting writers, then it is
immediately proceed to read the data.

• ReqRd(k): Process k requests reading access,
but there are active or waiting writers. It is
added to the set of waiting readers.

• GrRd(k): Waiting reader k is allowed to read
data when there are no active writers.

• EndRd(k): Active reader k signals that it has
finished reading and exists the protocol.

• ImmWr(k): Process k signals its desire to write.
If there are neither active or waiting writers nor
active or waiting readers, it may immediately
proceed to write the data.

• ReqWr(k): Process k signals that it wants to
write data, but the preconditions of action
ImmWr(k) are not met. It is added to the set of
waiting writers.

• GrWr(k): Waiting writer k is allowed to write
when there are neither active or waiting readers
nor active writers.

• EndWr(k): Active writer k signals that it has
finished writing and exits the protocol.

The fairness conditions are chosen such that

no process that has entered the system is persistently
neglected. In particular, there is a strong fairness
condition on the action DoWr(k), for all k ∈ M,
presumably implemented using a queue rather than a
set of waiting readers.

Our objective is to prove that the algorithm
satisfies the following properties:
1. Mutual-exclusion among writers, i.e. every time

there is only maximal one writing process.
2. Mutual-exclusion among readers and writers,

i.e. every time whenever there are active readers
then there are no active writers and vice versa.

3. PARAMETERIZED SYSTEMS SPECIFI-

CATION

In this work we have restricted to a class of
parameterized systems that are interleaving and
consist of a finitely, but arbitrarily, discrete
components.

Let M denotes a finite and non-empty set of
processes running in the system being considered. A
parameterized system can be described as a formula
of the form:

parSpec ≡ Init ∧ [∃k ∈ M:Next(k)]v
 ∧ ∀ k ∈ M : L(k)

where
• Init is a state predicate that describes the global

initial condition,
• Next(k) is an action characterizes the next-state

relation of a process k,

• v is a state function representing the variables of
the system and

• L(k) is a formula stating the liveness conditions
expected from the process or subsystem k.

Actions of the form A(k) are called

parameterized actions.

4. PREDICATE DIAGRAMS

Now we present a class of diagrams that will
be used for the verification of parameterized
systems.

4.1 Definition of predicate diagrams

The underlying assertion language, by
assumption, contains a finite set O of binary relation
symbols ⊂ that are interpreted by well-founded
orderings. For ⊂ ∈ O, its reflexive closure is
denoted by ⊆. We write O = to denote the set of
relation symbols ⊂ and ⊆ for ⊂ ∈ O.

A predicate diagram is a finite graph whose
nodes are labeled with sets of (possibly negated)
predicates, and whose edges are labeled with actions
(more precisely, action names) as well as optional
annotations that assert certain expressions to
decrease with respect to an ordering in O =.
Intuitively, a node of a predicate diagram represents
the set of system states that satisfy the formulas
contained in the node. (We indifferently write n for
the set and the conjunction of its elements.) An edge
(n,m) is labeled with action A if A can cause a
transition from a state represented by n to a state
represented by m. An action A may have an
associated fairness condition; fairness conditions
apply to all transitions labeled by the action rather
than to individual edges.

Formally, the definition of predicate diagrams
is relative to finite sets ℘ and α that contain the
state predicates and the (names of) parameterized
actions of interest; we will later use τ ∉ α to denote
a special stuttering action. We write Cl(℘) to denote
the set of literals formed by the predicates in ℘, that
is, the union of ℘ and the negations of the
predicates in ℘.

Definition 1. Assume given two finite sets ℘ and α
of state predicates and parameterized action names.
A predicate diagram G = (N,I,δ,o,ζ) over ℘ and α
consists of:
• a finite set N ⊆ 2

Cl(℘) of nodes,
• a finite set I ⊆ N of initial nodes,
• a family of δA where A ∈ α of relations δA ⊆ N ×

N; we also denote by δ the union of the relations
δA, for A ∈ α and write δ= to denote the
reflexive closure of the union of these relations,

• an edge labeling o that associates a finite set
{(t1,<1), …, (tk, <k)}, of terms ti paired with a
relation <i ∈ O = with every edge (n,m) ∈ δ, and

 L-2

Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022

Yogyakarta, 17 Juni 2006

• a mapping ζ:α→{NF,WF,SF} that associates a

fairness condition with every parameterized
action in α; the possible values represent no
fairness, weak fairness, and strong fairness.

We say that the parameterized action A ∈ α

can be taken at node n ∈ N iff (n,m) ∈ δA holds for
some m ∈ N, and denote by En(A) ⊆ N the set of
nodes where A can be taken. We say that the
parameterized action A ∈ α can be taken along an
edge (n,m) iff (n,m) ∈ δA.

We now define runs and traces through a
diagram as the set of those behaviors that correspond
to fair runs satisfying the node and edge labels. To
evaluate the fairness conditions we identify the
enabling condition of a parameterized action A ∈ α
with the existence of A-labeled edges at a given
node.

Definition 2. Let G = (N,I,δ,o,ζ) be a predicate
diagram over sets ℘ and α. A run of G is an ω-
sequence σ = (s0,n0,A0) (s1,n1,A1) … of triples where
si is a state, ni ∈ N is a node and Ai ∈ α ∪ {τ} is a
parameterized action such that all of the following
conditions hold:
• n0 ∈ I is an initial node.
• si |[ni]| holds for all i ∈ N.
• For all i∈N, either Ai=τ and ni = ni+1 or Ai∈α

and (ni,ni+1)∈δAi. Ai ∈ α and
• (t,<) ∈ o(ni,ni+1), then si+1 |[t]| < si |[t]|.
• If Ai = τ then si+1 |[t]| ≤ si |[t]| holds whenever (t,

<) ∈ o(ni,m) for some m ∈ N.
• For every parameterized action A ∈ α such that

ζ(A) = WF there are infinitely many i ∈ N such
that either Ai = A or ni ∉ En(A).

• For every parameterized action A ∈ α such that
ζ(A) = SF, either Ai = A holds for infinitely
many i ∈ N or ni ∈ En(A) holds for only finitely
many i ∈ N.

We write runs(G) to denote the set of runs of G.
The set tr(G) of traces through G consists of all
behaviors σ = s0s1 … such that there exists a run σ
= (s0,n0,A0) (s1,n1,A1) … of G based on the states in
σ.

4.2 Verification using predicate diagrams

The verification process using predicate
diagrams is done in two steps. The first step is to
find a predicate diagram that can be proven to be the
correct representation of the system being verified,
i.e. the diagram conforms to the system
specification. We say that a predicate diagram G
conforms to a parameterized system parSpec if every
behavior that satisfies parSpec is a trace through G.

Theorem 1

Let G = (N,I,δ,o,ζ) be a predicate diagram over ℘
and α and let parSpec = Init ∧ [∃k ∈ M:Next(k)]v

∧ ∀ k ∈ M : L(k) be a parameterized system. If all
the following conditions hold then G conforms to
parSpec:
1. For all n ∈ I, |= Init → n.
2. |≈ n ∧ [∃ k ∈ M : Next(k)]v → n' ∨

〈∃ k ∈ M : A(k)〉
)(),(:))(,(

/\
kAmnkAm δ∈

v

3. For all n,m ∈ N and all (t,<) ∈ o(n,m):
a. |≈ n ∧ m' ∧

)(),(:)(
/\

kAmnkA δ∈
〈∃k ∈ M : A(k)〉v → t’< t.

b. |≈ n ∧ [∃k ∈ M:Next(k)]v ∧ n' → t’ ≤ t.
4. For every parameterized action A(k) ∈ α such

that ζ(A(k) ≠ NF:
a. If ζ(A(k) = WF then |= parSpec → WFv(∃ k

∈ M : A(k)).
b. If ζ(A(k) = SF then |= parSpec → SFv(∃ k

∈ M : A(k)).
c. |≈ n → ENABLED 〈∃k∈M: A(k)〉v holds

whenever n ∈ En(A(k)).
d. |≈ n ∧ 〈∃k ∈ M:A(k)〉v → ¬ m' holds for all

n,m ∈ N such that (n,m) ∉ δA(k).

The second step of the verification process is
to prove that that all traces through a predicate
diagram satisfy some property F we view the
diagram as a finite transition system that is amenable
to model checking. All predicates and actions that
appear as labels of nodes or edges are then viewed
as atomic propositions.

Regarding predicate diagrams as finite
labeled transition systems, their runs can be encoded
in the input language of standard model checkers
such as SPIN [3]. Two variables indicate the current
node and the last action taken. The predicates in ℘
are represented by boolean variables, which are
updated according to the label of the current node,
non-deterministically, if that label contains neither P
nor ¬P. We also add variables b(t,<), for every term t
and relation < ∈ O such that (t,<) appears in some
ordering annotation o(n,m). These variables are set
to 2 if the last transition taken is labeled by (t,<), to
1 if it is labeled by (t,≤) or is stuttering transition and
to 0 otherwise. Whereas the fairness conditions
associated with the actions of a diagram are easily
expressed as LTL assumptions for SPIN [3].

5. SOLUTION

The specification of parameterized reader-
writer algorithm is given in Fig. 2. There are four
variables, which are ar, wr, aw and ww, representing
the set of active readers, waiting readers, active
writers and waiting writers.

Fig. 2 shows a suitable predicate diagram for
the parameterized reader-writer algorithm. We set
Cl(℘) to contain the eight predicates, which are: |ar|
= 0, |ar| > 0, |wr| = 0, |wr| > 0, |aw| = 0, |aw| = 1, |ww|
= 0 and |ww| > 0. It is assumed that the following

 L-3

Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022

Yogyakarta, 17 Juni 2006

conditions hold: ¬(|ar| = 0) ↔ |ar|> 0, ¬(|wr| = 0)
↔ |wr| > 0, ¬(|aw| = 0) ↔ |aw| = 1 and ¬(|aw| = 0)
↔ |aw| > 0. It can be argued that ¬(|aw| = 0) ↔ |aw|
= 1 holds, since the number of the active writers is
never greater than 1. IR, RR, GR, ER, IW, RW, GW
and EW stands for ImmRd(k), ReqRd(k), GrRd(k),
EndRd(k), ImmWr(k), ReqWr(k), GrWr(k) and
EndWr(k), respectively.

Using Theorem 1 it can be shown that the
predicate diagram in Fig. 2 conform to the
specification in Fig. 1. For example, we have:
• Init → |ar| = 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ |ww| = 0
• |ar| = 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ |ww| = 0 ∧ [∃ k∈

M : Next(k)]v →
|ar| = 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ |ww| = 0 ∨ 〈∃ k ∈
M : ImmRd(k)〉v ∧ |ar| > 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧
|ww| = 0 ∨
〈∃ k ∈ M : ImmWr(k)〉v ∧ |ar| = 0 ∧ |wr| = 0 ∧
|aw| = 1 ∧ |ww| = 0

The next step is to encode the predicate

diagram in Promela, the input language of SPIN. To
do this, six variables are used which are action,
node, ar, wr, aw, and ww. action and node are used
to indicate the last action taken and the current node;
whereas ar, wr, aw and ww are used to represent the
predicates that hold on every node, for example, if
ar = 1 then the predicate |ar| > 0 holds and if ar = 0
then the predicate |ar| = 0 holds. action = 1 if
ImmRd(k) is taken, action=2 is ReqRd(k) is taken
and so on.

The theorems are now can be written as
(aw = 0 ∨ aw = 1), (aw = 1 → ar = 0) and
(ar = 1 → aw = 0). Last, by using SPIN we

model-checked the resulted transition system. As
result, we concluded that the algorithm satisfies all
the properties we want to prove.

6. CONCLUSION

We have presented a diagram-based
verification of parameterized systems. The
parameterized systems are represented as parame-
terized TLA specifications. The verification is done
deductively and algorithmically by means of
predicate diagrams. We have modified the definition
of predicate diagrams and their runs in order to work
with parameterized systems.

By using the parameterized reader-writer
algorithm as a case study, we have shown that the
modified predicate diagrams can be used to prove
the mutual exclusion properties. Note that we didn't
consider the liveness conditions on this case. We are
allowed to do this since the mutual-exclusion
properties are safety properties. The situation is
different if the properties we want to prove are
liveness properties, such as every time a process

requests to read, it will be eventually allowed to

read.

Init ≡ ar = ∅ ∧ wr = ∅ ∧ aw = ∅ ∧ ww = ∅
ImmRd(k) ≡ ∧ k ∉ ar ∪ wr ∪ aw ∪ ww ∧ aw = ∅
 ∧ ww = ∅ ∧ ar' = ar ∪ k}
 ∧ UNCHANGED〈wr,aw,ww〉
ReqRd(k) ≡ ∧ k ∉ ar ∪ wr ∪ aw ∪ ww
 ∧ ¬(aw=∅ ∧ ww=∅) ∧ wr'= wr ∪ {k}
 ∧ UNCHANGED 〈ar,aw,ww〉
 GrRd(k) ≡ ∧ k ∈ wr ∧ aw = ∅ ∧ ar' = ar ∪ {k}
 ∧ wr' = wr ⁄ {k}
 ∧ UNCHANGED〈aw, ww〉
EndRd(k) ≡ ∧ k ∈ ar ∧ ar'=ar \ {k}
 ∧ UNCHANGED 〈wr,aw,ww〉
ImmWr(k) ≡ ∧ k ∉ ar ∪ wr ∪ aw ∪ ww
 ∧ ar ∪wr ∪aw ∪ ww = ∅ ∧

aw'=aw ∪ {k}
 ∧ UNCHANGED 〈ar,wr,ww〉
ReqWr(k) ≡ ∧ k ∉ar ∪ wr ∪aw ∪ww ∧ ww'= ww ∪

{k}
 ∧ a r ∪ wr ∪ aw ∪ ww ≠ ∅
 ∧UNCHANGED〈ar,wr,aw〉
GrWr(k) ≡ ∧ k ∈ ww ∧ a ∪w ∪aw = ∅ ∧ aw'=aw

∪{k}
 ∧ ww' = ww \ {k} ∧ UNCHANGED

〈ar,wr〉
EndWr(k) ≡ ∧ k ∈ aw ∧ aw'=aw \ {k}
 ∧ UNCHANGED 〈ar,wr,ww〉
Next(k) ≡ ∨ ImmRd(k) ∨ ReqRd(k) ∨ GrRd(k)
 ∨ EndRd(k) ∨ ImmWr(k) ∨ ReqWr(k)
 ∨ GrWr(k) ∨ EndWr(k)
v ≡ 〈ar,wr,aw,ww〉
L(k) ≡ WFv(GrRd(k)) ∧ WFv(EndRd(k)) ∧
 SFv(GrWr(k)) ∧ WFv(EndWr(k))
ParRW ≡ ∀ k ∈ 1..M:Init ∧ [Next(k)]v ∧ L(k)
THEOREM ParRW → (|aw| ≤ 1)
THEOREM ParRW → (|aw| = 1 → |ar| = 0)
THEOREM ParRW → (|ar| > 0 → |aw| = 0)

Fig. 1. Specification of parameterized reader-writer.

It is planned to continue this work with

verification of universal properties of parameterized
reader-writer algorithm. Universal properties are
properties expressed as formulas of the form ∀k ∈
1..n:P(k) for P is some property. On this case,
another class of diagram will be used, which is
Parameterized Predicate Diagram [7,8].

 L-4

Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022

Yogyakarta, 17 Juni 2006

F

ig. 2. Suitable predicate diagram for reader-writer
algorithm.

REFERENCES

[1] Dominique Cansell, Dominique Méry and
Stephan Merz. Predicate diagrams for the
verification of reactive systems. In 2

nd
 Intl.

Conf. on Integrated Formal Methods IFM

2000, vol. 1945 of Lectures Notes in Computer
Science, Dagstuhl, Germany, November 2000.
Springer-Verlag.

[2] E.A. Emerson and K.S. Namjoshi. Verification
of a parameterized bus arbitration protocol.
Volume 1427 of Lecture Notes in Computer

Science, pp. 452--463. Springer,1998.
[3] G. Holzmann. The SPIN model checker. IEEE

Trans. On software engineering, 16(5):1512-
1542. May 1997.

[4] Leslie Lamport. The Temporal Logic of
Actions. ACM Transactions on Programming

Languages and Systems, 16(3): 872-923, May
1994.

[5] Zohar Manna and Amir Pnueli. Verification of
parameterized programs. In Specification and

Validation Methods (E. Borger, ed.), Oxford
University Press, pp. 167-230, 1994.

[6] Stephan Merz. Logic-based analysis of reactive
systems: hiding, composition and abstraction.
Habilitationsschrift. Institut für Informatik.
Ludwig-Maximillians-Universität, Munich
Germany. December 2001.

[7] Cecilia E. Nugraheni. Predicate diagrams as
basis for the verification of reactive systems.
PhD Thesis. Institut für Informatik. Ludwig-
Maximillians-Universität, Munich Germany.
February 2004.

[8] Cecilia E. Nugraheni. Universal properties
verification of parame-terized parallel systems.
In Proceeding of the International Confe-rence

on Computational Scince and its Applications

(ICCSA 2005), Volume 3482 of Lecture Notes
in Computer Science, pages 453-462. Springer,
2005.

 L-5

Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022

Yogyakarta, 17 Juni 2006

 L-6

	ABSTRACT

