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ABSTRACT 

 This paper presents the verification of mutual-exclusion properties of parameterized reader-writer 

algorithm. A class of diagram called Predicate diagrams [1] is used for representing the abstractions of 

parameterized systems described by specifications written in TLA. The verification is done by integrating 

deductive verification and algorithmic techniques. The correspondence between the original specification and 

the diagram is established by non-temporal proof obligations. Whereas model checker SPIN [3] is used to verify 

properties over finite-state abstractions. 
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1. INTRODUCTION 

Verification consists of establishing whether 
a system satisfies some property, that is, whether all 
possible behaviors of the system are included in the 
property specified. There are basically two 
approaches to formal verification, which are the 
deductive approach and the algorithmic approach. 
The deductive approach is based on verification 

rules, which reduces the system validity of a 
temporal property to the general validity of a set of 
first-order verification conditions. The most popular 
algorithmic verification method is model checking. 
Although this method is fully automatic for finite-
state systems, it suffers from the so-called state-

explosion problem. 
A parameterized parallel system, or a 

parameterized system for short, consists of several 
similar processes whose number is determined by an 
input parameter. Many interesting systems are of 
this form, for example, mutual exclusion algorithms 
for an arbitrary number of processes wanting to use 
a common resource. To provide methods for the 
uniform verification of such systems is a challenging 
problem. The key to such a uniform treatment is 
parameterization, i.e. presenting a single syntactic 
object that actually represents a family of objects. 

In the context of parameterized systems, the 
ability to conduct a uniform verification of a 
parameterized system is one of the striking 
advantages of the deductive method for temporal 
verification over algorithmic techniques such as 
model-checking techniques. In general, nothing can 
be concluded about the property holding for any 
value of n from the fact that it holds for some finite 
set of values. In comparison, the deductive method 
establishes in one fell swoop the validity of the 
property for any value of n [5,2]. 

The need for a more intuitive approach to 
verification leads to the use of diagram-based 

formalisms. Usually, these diagrams are graphs 
whose vertices are labeled with first-order formulas, 

representing sets of system states, and whose edges 
represent possible system transitions. This approach 
combines some of the advantages of deductive and 
algorithmic verification: the process is goal-directed, 
incremental and can handle infinite-state systems. 

This paper presents the verification of mutual 
exclusion properties of parameterized reader-writer 
algorithm. This algorithm can be considered as a 
parameterized system, since it can handle arbitrary 
numbers of readers and writers. 

We used the diagram-based method. In 
particular, we adopted the approach proposed by 
Cansell et.al. In [1] they presented a class of 
diagrams called predicate diagrams and showed how 
the using of these in formal verification. We made a 
little modification of the definition of the original 
predicate diagrams, in particular the definition 
related to the actions. Instead of actions, we 
concentrate only on parameterized actions which are 
actions of the form A(k). This form of actions is 
usually used in modeling actions of a particular 
process in the system. We use TLA* [6] to formalize 
our approach and use TLA+ style [4] for writing 
specifications. 

This paper is structured as follows. We begin 
with the informal description of reader-writer 
algorithm. Section 2 explains briefly the formal 
specification of parameterized systems in TLA*. 
Section 3 describes the definition and the use of 
predicate diagrams in the verification of 
parameterized systems. The solution of the case 
study is presented in Section 4. Finally, conclusion 
and future work will be given in Section 5. 
 
2. PARAMETERIZED READER-WRITER 

ALGORITHM 

The protocol is expressed in terms of four 
sets that contain (the identities of) currently active 
readers, waiting readers, active writers and waiting 
writers. All the sets are initially empty. Assume 
there are M processes running in the systems. Every 
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process in the system can perform the following 
actions: 
• ImmRd(k): Process k signals its desire to read. If 

there are no active or waiting writers, then it is 
immediately proceed to read the data. 

• ReqRd(k): Process k requests reading access, 
but there are active or waiting writers. It is 
added to the set of waiting readers. 

• GrRd(k): Waiting reader k is allowed to read 
data when there are no active writers. 

• EndRd(k): Active reader k signals that it has 
finished reading and exists the protocol. 

• ImmWr(k): Process k signals its desire to write. 
If there are neither active or waiting writers nor 
active or waiting readers, it may immediately 
proceed to write the data. 

• ReqWr(k): Process k signals that it wants to 
write data, but the preconditions of action 
ImmWr(k) are not met. It is added to the set of 
waiting writers. 

• GrWr(k): Waiting writer k is allowed to write 
when there are neither active or waiting readers 
nor active writers. 

• EndWr(k): Active writer k signals that it has 
finished writing and exits the protocol. 

 
The fairness conditions are chosen such that 

no process that has entered the system is persistently 
neglected. In particular, there is a strong fairness 
condition on the action DoWr(k), for all k ∈ M, 
presumably implemented using a queue rather than a 
set of waiting readers. 

Our objective is to prove that the algorithm 
satisfies the following properties: 
1. Mutual-exclusion among writers, i.e. every time 

there is only maximal one writing process. 
2. Mutual-exclusion among readers and writers, 

i.e. every time whenever there are active readers 
then there are no active writers and vice versa. 

 
3. PARAMETERIZED SYSTEMS SPECIFI-

CATION 

In this work we have restricted to a class of 
parameterized systems that are interleaving and 
consist of a finitely, but arbitrarily, discrete 
components. 

Let M denotes a finite and non-empty set of 
processes running in the system being considered. A 
parameterized system can be described as a formula 
of the form: 
 

parSpec ≡ Init ∧  [∃k ∈ M:Next(k)]v  
           ∧ ∀ k ∈ M : L(k) 

 

where  
• Init is a state predicate that describes the global 

initial condition, 
• Next(k) is an action characterizes the next-state 

relation of a process k, 

• v is a state function representing the variables of 
the system and 

• L(k) is a formula stating the liveness conditions 
expected from the process or subsystem k. 

 
Actions of the form A(k) are called 

parameterized actions. 
 
4. PREDICATE DIAGRAMS 

Now we present a class of diagrams that will 
be used for the verification of parameterized 
systems. 
 
4.1 Definition of predicate diagrams 

The underlying assertion language, by 
assumption, contains a finite set O of binary relation 
symbols ⊂ that are interpreted by well-founded 
orderings.  For ⊂ ∈ O, its reflexive closure is 
denoted by ⊆.  We write O = to denote the set of 
relation symbols ⊂ and ⊆ for ⊂ ∈ O. 

A predicate diagram is a finite graph whose 
nodes are labeled with sets of (possibly negated) 
predicates, and whose edges are labeled with actions 
(more precisely, action names) as well as optional 
annotations that assert certain expressions to 
decrease with respect to an ordering in O =. 
Intuitively, a node of a predicate diagram represents 
the set of system states that satisfy the formulas 
contained in the node. (We indifferently write n for 
the set and the conjunction of its elements.) An edge 
(n,m) is labeled with action A if A can cause a 
transition from a state represented by n to a state 
represented by m. An action A may have an 
associated fairness condition; fairness conditions 
apply to all transitions labeled by the action rather 
than to individual edges. 

Formally, the definition of predicate diagrams 
is relative to finite sets ℘ and α that contain the 
state predicates and the (names of) parameterized 
actions of interest; we will later use τ ∉ α to denote 
a special stuttering action. We write Cl(℘) to denote 
the set of literals formed by the predicates in ℘, that 
is, the union of ℘ and the negations of the 
predicates in ℘. 
 
Definition 1. Assume given two finite sets ℘ and α  
of state predicates and parameterized action names. 
A predicate diagram G = (N,I,δ,o,ζ) over ℘ and α 
consists of: 
• a finite set N ⊆ 2 

Cl(℘) of nodes, 
• a finite set I ⊆ N of initial nodes, 
• a family of δA where A ∈ α of relations δA ⊆ N × 

N; we also denote by δ the union of the relations 
δA, for A ∈ α and write δ= to denote the 
reflexive closure of the union of these relations,  

• an edge labeling o that associates a finite set 
{(t1,<1), …, (tk, <k)}, of terms ti paired with a 
relation <i ∈ O = with every edge (n,m) ∈ δ, and  
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• a mapping ζ:α→{NF,WF,SF} that associates a 

fairness condition with every parameterized 
action in α; the possible values represent no 
fairness, weak fairness, and strong fairness. 

 
We say that the parameterized action A ∈ α 

can be taken at node n ∈ N iff (n,m) ∈ δA holds for 
some m ∈ N, and denote by En(A) ⊆ N the set of 
nodes where A can be taken. We say that the 
parameterized action A ∈ α can be taken along an 
edge (n,m) iff (n,m) ∈ δA.  

We now define runs and traces through a 
diagram as the set of those behaviors that correspond 
to fair runs satisfying the node and edge labels. To 
evaluate the fairness conditions we identify the 
enabling condition of a parameterized action A ∈ α 
with the existence of A-labeled edges at a given 
node. 
 

Definition 2. Let G = (N,I,δ,o,ζ) be a predicate 
diagram over sets ℘ and α. A run of G is an ω-
sequence σ = (s0,n0,A0) (s1,n1,A1) … of triples where 
si is a state, ni ∈ N is a node and Ai ∈ α ∪ {τ} is a 
parameterized action such that all of the following 
conditions hold: 
• n0 ∈ I is an initial node.  
• si |[ni]| holds for all i ∈ N.  
• For all i∈N, either Ai=τ  and ni = ni+1 or Ai∈α 

and (ni,ni+1)∈δAi. Ai ∈ α  and 
• (t,<) ∈ o(ni,ni+1), then si+1 |[t]|  < si |[t]|.  
• If Ai = τ then si+1 |[t]| ≤ si |[t]| holds whenever (t, 

<) ∈ o(ni,m) for some m ∈ N.  
• For every parameterized action A ∈ α  such that 

ζ(A) = WF there are infinitely many i ∈ N such 
that either Ai = A or ni ∉ En(A).  

• For every parameterized action A ∈ α such that 
ζ(A) = SF, either Ai = A holds for infinitely 
many i ∈ N or ni ∈ En(A) holds for only finitely 
many i ∈ N. 

We write runs(G) to denote the set of runs of G. 
The set tr(G) of traces through G consists of all 
behaviors σ = s0s1 … such that there exists a run  σ 
= (s0,n0,A0) (s1,n1,A1) … of  G based on the states in 
σ.  
 
4.2 Verification using predicate diagrams 

The verification process using predicate 
diagrams is done in two steps. The first step is to 
find a predicate diagram that can be proven to be the 
correct representation of the system being verified, 
i.e. the diagram conforms to the system 
specification. We say that a predicate diagram G 
conforms to a parameterized system parSpec if every 
behavior that satisfies parSpec is a trace through G. 
 
Theorem 1 

Let G = (N,I,δ,o,ζ) be a predicate diagram over ℘ 
and α and let parSpec = Init ∧  [∃k ∈ M:Next(k)]v 

∧ ∀ k ∈ M : L(k) be a parameterized system. If all 
the following conditions hold then G conforms to 
parSpec: 
1. For all n ∈ I, |= Init → n. 
2. |≈ n ∧ [∃ k ∈ M : Next(k)]v → n' ∨ 

〈∃ k ∈ M : A(k)〉
)(),(:))(,(

/\
kAmnkAm δ∈

v 

3. For all n,m ∈ N and all (t,<) ∈ o(n,m): 
a. |≈ n ∧ m' ∧  

)(),(:)(
/\

kAmnkA δ∈
〈∃k ∈ M : A(k)〉v → t’< t. 

b. |≈  n ∧ [∃k ∈ M:Next(k)]v ∧ n' → t’ ≤  t. 
4. For every parameterized action A(k) ∈ α such 

that ζ(A(k) ≠ NF: 
a. If ζ(A(k)  = WF then |= parSpec → WFv(∃ k 

∈ M : A(k)). 
b. If ζ(A(k)  = SF then |= parSpec → SFv(∃ k 

∈ M : A(k)). 
c. |≈ n → ENABLED 〈∃k∈M: A(k)〉v holds 

whenever n ∈ En(A(k)). 
d. |≈ n ∧ 〈∃k ∈ M:A(k)〉v → ¬ m' holds for all 

n,m ∈ N such that (n,m) ∉ δA(k). 
 

The second step of the verification process is 
to prove that that all traces through a predicate 
diagram satisfy some property F we view the 
diagram as a finite transition system that is amenable 
to model checking. All predicates and actions that 
appear as labels of nodes or edges are then viewed 
as atomic propositions. 

Regarding predicate diagrams as finite 
labeled transition systems, their runs can be encoded 
in the input language of standard model checkers 
such as SPIN [3]. Two variables indicate the current 
node and the last action taken. The predicates in ℘ 
are represented by boolean variables, which are 
updated according to the label of the current node, 
non-deterministically, if that label contains neither P 
nor ¬P. We also add variables b(t,<), for every term t 
and relation < ∈ O such that (t,<) appears in some 
ordering annotation o(n,m). These variables are set 
to 2 if the last transition taken is labeled by (t,<), to 
1 if it is labeled by (t,≤) or is stuttering transition and 
to 0 otherwise. Whereas the fairness conditions 
associated with the actions of a diagram are easily 
expressed as LTL assumptions for SPIN [3]. 

 
5. SOLUTION 

The specification of parameterized reader-
writer algorithm is given in Fig. 2. There are four 
variables, which are ar, wr, aw and ww, representing 
the set of active readers, waiting readers, active 
writers and waiting writers. 

Fig. 2 shows a suitable predicate diagram for 
the parameterized reader-writer algorithm. We set 
Cl(℘) to contain the eight predicates, which are: |ar| 
= 0, |ar| > 0, |wr| = 0, |wr| > 0, |aw| = 0, |aw| = 1, |ww| 
= 0 and |ww| > 0. It is assumed that the following 
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conditions hold: ¬(|ar| = 0) ↔ |ar|> 0, ¬(|wr| = 0) 
↔ |wr| > 0, ¬(|aw| = 0) ↔ |aw| = 1 and ¬(|aw| = 0) 
↔ |aw| > 0. It can be argued that ¬(|aw| = 0) ↔ |aw| 
= 1 holds, since the number of the active writers is 
never greater than 1. IR, RR, GR, ER, IW, RW, GW 
and EW stands for ImmRd(k), ReqRd(k), GrRd(k), 
EndRd(k), ImmWr(k), ReqWr(k), GrWr(k) and 
EndWr(k), respectively. 

Using Theorem 1 it can be shown that the 
predicate diagram in Fig. 2 conform to the 
specification in Fig. 1. For example, we have: 
• Init → |ar| = 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ |ww| = 0 
• |ar| = 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ |ww| = 0 ∧ [∃ k∈ 

M : Next(k)]v →  
|ar| = 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ |ww| = 0 ∨ 〈∃ k ∈ 
M : ImmRd(k)〉v ∧ |ar| > 0 ∧ |wr| = 0 ∧ |aw| = 0 ∧ 
|ww| = 0 ∨ 
〈∃ k ∈ M : ImmWr(k)〉v ∧ |ar| = 0 ∧ |wr| = 0 ∧ 
|aw| = 1 ∧ |ww| = 0 

 
The next step is to encode the predicate 

diagram in Promela, the input language of SPIN. To 
do this, six variables are used which are action, 
node, ar, wr, aw, and ww. action and node are used 
to indicate the last action taken and the current node; 
whereas ar, wr, aw and ww are used to represent the 
predicates that hold on every node, for example, if 
ar = 1 then the predicate |ar| > 0 holds and if ar = 0 
then the predicate |ar| = 0 holds. action = 1 if 
ImmRd(k) is taken, action=2 is ReqRd(k) is taken 
and so on.  

The theorems are now can be written as 
(aw = 0 ∨ aw = 1), ( aw = 1 →  ar = 0) and 
(ar = 1 →  aw = 0). Last, by  using SPIN we 

model-checked the resulted transition system. As 
result, we concluded that the algorithm satisfies all 
the properties we want to prove. 

 
6. CONCLUSION 

We have presented a diagram-based 
verification of parameterized systems. The 
parameterized systems are represented as parame-
terized TLA specifications. The verification is done 
deductively and algorithmically by means of 
predicate diagrams. We have modified the definition 
of predicate diagrams and their runs in order to work 
with parameterized systems. 

By using the parameterized reader-writer 
algorithm as a case study, we have shown that the 
modified predicate diagrams can be used to prove 
the mutual exclusion properties. Note that we didn't 
consider the liveness conditions on this case. We are 
allowed to do this since the mutual-exclusion 
properties are safety properties. The situation is 
different if the properties we want to prove are 
liveness properties, such as every time a process 

requests to read, it will be eventually allowed to 

read. 
 

Init ≡ ar = ∅ ∧ wr = ∅ ∧ aw = ∅ ∧ ww = ∅  
ImmRd(k) ≡ ∧ k ∉  ar ∪ wr ∪ aw ∪ ww ∧ aw = ∅  
 ∧ ww = ∅ ∧ ar' = ar ∪ k} 
 ∧ UNCHANGED〈wr,aw,ww〉 
ReqRd(k) ≡ ∧ k ∉ ar ∪ wr ∪ aw ∪ ww  
 ∧ ¬(aw=∅ ∧ ww=∅) ∧ wr'= wr ∪ {k}  
 ∧ UNCHANGED 〈ar,aw,ww〉 
 GrRd(k) ≡ ∧ k ∈ wr ∧  aw = ∅ ∧ ar' = ar ∪ {k} 
                  ∧ wr' = wr ⁄ {k}  
 ∧ UNCHANGED〈aw, ww〉 
EndRd(k) ≡ ∧  k ∈ ar ∧ ar'=ar \ {k}  
 ∧ UNCHANGED 〈wr,aw,ww〉 
ImmWr(k) ≡ ∧ k ∉ ar  ∪ wr  ∪ aw  ∪ ww  
 ∧ ar ∪wr ∪aw ∪ ww = ∅ ∧ 

aw'=aw ∪ {k}  
 ∧ UNCHANGED 〈ar,wr,ww〉 
ReqWr(k) ≡ ∧ k ∉ar ∪ wr ∪aw ∪ww ∧ ww'= ww ∪ 

{k} 
 ∧ a r ∪ wr ∪ aw ∪ ww ≠ ∅ 
                  ∧UNCHANGED〈ar,wr,aw〉 
GrWr(k) ≡    ∧ k ∈ ww ∧ a ∪w ∪aw = ∅ ∧ aw'=aw 

∪{k} 
 ∧ ww' = ww \ {k} ∧ UNCHANGED 

〈ar,wr〉 
EndWr(k) ≡  ∧ k ∈ aw ∧ aw'=aw \ {k}   
 ∧ UNCHANGED 〈ar,wr,ww〉 
Next(k) ≡  ∨ ImmRd(k) ∨ ReqRd(k) ∨ GrRd(k)  
 ∨ EndRd(k) ∨  ImmWr(k) ∨ ReqWr(k)  
 ∨ GrWr(k) ∨  EndWr(k)  
v ≡  〈ar,wr,aw,ww〉 
L(k) ≡ WFv(GrRd(k)) ∧ WFv(EndRd(k)) ∧ 
             SFv(GrWr(k)) ∧ WFv(EndWr(k)) 
ParRW ≡  ∀ k ∈ 1..M:Init ∧  [Next(k)]v ∧ L(k) 
THEOREM ParRW →  (|aw| ≤ 1) 
THEOREM ParRW →  (|aw| = 1 → |ar| = 0) 
THEOREM ParRW →  (|ar| > 0 → |aw| = 0) 

Fig. 1. Specification of parameterized reader-writer. 
 
It is planned to continue this work with 

verification of universal properties of parameterized 
reader-writer algorithm. Universal properties are 
properties expressed as formulas of the form  ∀k  ∈ 
1..n:P(k) for P is some property. On this case, 
another class of diagram will be used, which is 
Parameterized Predicate Diagram [7,8]. 

 

 L-4



Seminar Nasional Aplikasi Teknologi Informasi 2006 (SNATI 2006) ISSN: 1907-5022 

Yogyakarta, 17 Juni 2006 

 

F

ig. 2. Suitable predicate diagram for reader-writer 
algorithm. 
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