DINAMIKA POPULASI NYAMUK YANG DIDUGA SEBAGAI VEKTOR DI KECAMATAN ROWOKELE, KABUPATEN KEBUMEN, JAWA TENGAH

Dhian Prastowo*, Yusnita Mirna Anggraini*
*Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit, Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan, JL. Hasanudin No. 123, Salatiga
Email : dhian.prastowo@gmail.com

A DYNAMIC STUDY OF MOSQUITOES POPULATION THAT SUSPECTED AS VECTOR IN ROWOKELE DISTRICT, KEBUMEN REGENCY, CENTRAL JAVA

ABSTRACT

Mosquito-borne diseases such as malaria, dengue fever, lymphatic filariasis, chikungunya still a problem in Indonesia. Data on mosquito vector-borne diseases is needed in the control of mosquito-borne disease vectors. The purpose of this study was to identify the dynamics of population vector mosquito and habitats around in the Rowokele SubDistrict Kebumen Regency Central Java Province. This research is a descriptive exploratory study. Design of this study used a design method of spot surveys. Found 13 species of mosquitoes in the study site Wagirpandan sub Desa Rowokele Kebumen the Anopheles aconitus, An. annularis, An. barbirostris, An. balabacensis, An. kochi, An. maculates, An. vugus, Aedes albopictus, Ae. poecilius, Culex vishnui, Cx. quinquifasciatus, Armigeres kuchingensis and Ar. subalbatus, An. aconitus, An. barbirostris, An. balabacensis, An. maculates and An. vugus have been confirmed as vectors of malaria. High blood sucking activity at night at around 18:00 to 2:00 with the highest density at 20.00-21.00 hrs. Breeding sites of mosquito larvae found in ground pool, around streams and around rice fields. It was also found around the springs to life people activities. The environmental factors of temperature, humidity and rainfall and vegetation to support the existence of mosquito vector breeding habitats of mosquitoes at the areas.

Keywords: Dinamics of Population, Vector, Rowokele

ABSTRAK


**Kata Kunci : Dinamika Populasi, Vektor, Rowokele**

**PENDAHULUAN**


Kabupaten Kebumen dengan kondisi geografis dari dataran rendah sampai dataran tinggi memiliki karakteristik lingkungan tersendiri seperti keadaan tanah, vegetasi dan kondisi fisik lain. Tata guna lahan di daerah penelitian terdapat tanaman keras seperti pohon jati (Tectona grandis), kelapa (Cocos nucifera) dan semak belukar (tanaman perdu). Wilayah tersebut berupa daerah pegunungan dan dataran rendah.

Keaneeragaman vektor dipengaruhi oleh sebaran, bioekologi dan karateristik habitat perkembangbiakan. Habitat tempat berkembangbiak stadium pradewasa sangat diperlukan nyamuk vektor malaria untuk bertelur sampai berkembang menjadi dewasa. Faktor lingkungan baik lingkungan biotik,
abiotik dan sosial budaya masyarakat berpengaruh terhadap kasus malaria. Faktor lingkungan yang juga sangat berpengaruh terhadap kejadian malaria adalah adanya vegetasi di sekitar lingkungan rumah penduduk. (Nilam Sari C I. 2005)

Lingkungan yang berpotensi meningkatkan kontak nyamuk vektor dengan manusia adalah vegetasi, (Friaraiyatini, 2004) musim (pergantian musim atau musim pancaroba), pola tanam masyarakat dan ketersediaan habitat (tempat perkembangbiakan) nyamuk vektor malaria. Kondisi lingkungan tersebut sangat penting terhadap kehidupan larva dan penyebaran nyamuk vektor malaria, sehingga perlu dilakukan penelitian dari ekologi tempat perkembangbiakan nyamuk.

Tujuan penelitian ini adalah mengidentifikasi populasi fauna nyamuk yang diduga sebagai vektor dan habitat lingkungan di Kecamatan Rowokele Kabupaten Kebumen Provinsi Jawa Tengah.

METODE PENELITIAN


Dilakukan penangkapan nyamuk vektor malaria di 2 rumah penduduk pada sore sampai pagi hari (pukul 18.00 - 06.00) dengan cara umpan orang dalam rumah (UOD), umpan orang luar rumah (UOL), tempat istirahat dalam rumah (RD) dan luar rumah/kandang ternak (RL). Penangkapan dilakukan menggunakan aspirator.

Koleksi larva nyamuk dilakukan di semua genangan air ditemukan di lokasi penelitian berpotensi sebagai tempat perkembangbiakan nyamuk menggunakan ciduk larva (dipper), volume 350 ml.

Faktor lingkungan abiotik dilakukan pengukuran langsung (suhu kelembaban udara dan pH). Data curah hujan adalah data sekunder diperoleh pengukuran dari kantor Badan Meteorologi Klimatologi dan Geofisika (BMKG). Pengumpulan faktor biotik dilakukan dengan pengamatan jenis vegetasi, predator dan adanya hewan ternak di sekitar tempat perkembangbiakan nyamuk.

Data yang didapat dianalisa dengan cara deskriptif.

HASIL DAN PEMBAHASAN

Penelitian dilakukan di Desa Wagirpandan dengan topografi dataran tinggi dan dataran rendah. Penangkapan nyamuk vektor dilakukan di Dusun Borang dan Cuntelan. Daerah ini merupakan dataran tinggi yang
berbatasan dengan Kabupaten Banyumas dan Kabupaten Purbalingga.

A. Hasil Penangkapan Nyamuk


Gambar 1. Spesies nyamuk yang tertangkap di Borang Rwokele 2011

Hasil penangkapan nyamuk di Dusun Cuntelan diperoleh empat genus nyamuk *Anopheles*, *Armigeres*, *Aedes* dan *Culex* dengan sembilan jenis spesies yaitu *Anopheles barbirostris*, *An. balabacensis*, *An. maculatus*, *Armigeres kuchingensis*, *Ar. subalbatus*, *Aedes albopictus*, *Ae. poecilius*, *Culex quinquefasciatus* dan *Cx. vishnui* dapat dilihat dalam Gambar 2. Jumlah nyamuk terbanyak di Cuntelan adalah spesies *Cx. quinquefasciatus* (24,5%), *Aedes poecilius* (18,4%), *Armigeres kuchingensis* (16,3%), *An. balabacensis* (12,2%) dan *An. barbirostris* (10,2%)
Gambar 2. Spesies nyamuk yang tertangkap di Cuntelan, Rowokele 2011

Nyamuk tertangkap pukul 18.00 – 02.00 waktu setempat. Pukul 03.00 sampai pukul 06.00 tidak dijumpai nyamuk di dusun Cuntelan sedangkan di dusun Borang ditemukan nyamuk sepanjang malam dari pukul 18.00 – 06.00, tetapi setelah pukul 02.00 kepadatannya menurun. Kepadatan tertinggi nyamuk terdapat pada pukul 20.00 -21.00 di dusun Borang dan pukul 23.00-24.00 di dusun Cuntelan.

Sedangkan pukul 24.00 – 01.00 jumlah nyamuk tertangkap menurun. Nyamuk tertangkap meningkat kembali pukul 02.00 – 06.00 di dusun Borang. Berbeda dengan di dusun Cuntelan pukul 03.00 – 06.00 tidak ditemukan nyamuk sama sekali. Gambaran tersebut dapat dilihat seperti pada Gambar 3 dan Gambar 4.. Gambar tersebut menunjukkan setiap spesies berbeda ditemukan pola aktivitas berbeda-beda pula.
Gambar 3. Penangkapan nyamuk berdasarkan waktu di Dusun Borang Rowokele 2011

Gambar 4. Penangkapan nyamuk berdasarkan waktu di Dusun Cuntelan Rowokele 2011

Populasi yang tinggi ditemukan di dua tempat adalah spesies *Culex vishnui* (531 ekor), *Anopheles vagus* (222 ekor), *An. maculatus* (85 ekor) dan *An. Aconitus* (33 ekor) di Dusun Borang, serta *Cx quinquefasciatus* (12 ekor), *Aedes*
poecilius (9 ekor), Armigeres kuchingensis (8 ekor), An. balabacensis (6 ekor) dan An. barbirostris (5 ekor) di Dusun Cuntelan. Hal tersebut dimungkinkan karena kondisi lingkungan dan habitat mendukung dalam perkembangbiakan populasinya. An. maculatus dan An. vagus dijumpai sepanjang malam dari pukul 18.00 – 06.00 waktu setempat. An. maculatus tidak dijumpai hanya pada pukul 24.00 – 02.00 di Dusun Borang. An. balabacensis dan An. barbirostris lebih fluktuatif tetapi tidak dijumpai pukul 02.00 – 06.00. Sedangkan An. aconitus mirip dengan An. maculatus dijumpai sepanjang malam pukul 18.00 – 06.00, tetapi tidak dijumpai pukul 24.00 – 02.00. Cx. quinquefasciatus dijumpai dari pukul 18.00-02.00 di Dusun Cuntelan.


Di Kabupaten Barito Selatan Provinsi Kalimantan Tengah dilaporkan An. balabacensis mulai menggigit manusia jam 20.00 waktu setempat. An. balabacensis ditemukan pada genangan air jernih dan dasar lumpur di hutan-hutan, menyenangi tempat terbuka dan terkena sinar matahari. Aktivitas menggigit An. balabacensis bersifat exophagic di daerah pegunungan Pulau Lombok, di mana aktivitas menggigit tertinggi dari pukul 19.00 dan 21:00 dan


Hewan ternak yang ada di sekitar penduduk adalah kambing dan sapi. Hewan ternak tersebut berpengaruh terhadap keberadaan nyamuk yang mencari pakan darah untuk pemasakan telurnya. Seperti halnya An. vagus yang ditemukan paling banyak di sekitar kandang ternak. Adanya hewan ternak menyebabkan pemilik ternak sering berinteraksi dengan lingkungan sekitar menjadi sumber pakan darah bagi nyamuk vektor. Aktivitas penduduk di kandang ternak pada malam hari sangat beresiko terhadap kontak dengan nyamuk sehingga akan lebih besar kemungkinan terjadinya penularan penyakit.

Nyamuk dapat berperan sebagai vektor limfatik filariasis (kaki gajah). Menurut Ditjen PP&PL Depkes RI dalam Buletin Jendela Epidemiologi, di Indonesia diperkirakan terdapat lebih dari 23 spesies vektor nyamuk penular limfatik filariasis yang terdiri dari genus Anopheles, Aedes, Culex, Mansonia, dan

Menurut Upiek Ngesti dan Suwarno (2010), periode aktif nyamuk Cx. quinquefasciatus adalah dari pukul 19.00-06.00, dengan puncak aktif pukul 23.00-02.00 baik di Kota Yogyakarta (Ngampilan dan Notoprajan) untuk tangkapan luar rumah, sedang puncak aktif di dalam rumah adalah pukul 19.00-20.00 dan pukul 05.00-06.00. Nyamuk menyukai tempat istirahat yang gelap (kurang cahaya), pakaian menggantung, plafon, dan perabotan rumah, sedangkan untuk perindukannya menyukai tempat seperti genangan air yang kotor, saluran air yang tidak lancar dan tempat yang dapat menampung air kotor. (Upiek Ngesti WA, 2010) Hal ini berbeda dengan di Kecamatan Rowekele Kebumen (Borang dan Cuntelan), Cx. quinquefasciatus tidak dijumpai pukul 04.00 – 06.00, ini dimungkinkan karena perbedaan di Borang dan Cuntelan merupakan pedesaan dataran tinggi sedangkan di Ngampilan dan Notoprajan merupakan daerah perkotaan.

Chikungunya penyakit menular disebabkan oleh virus Chikungunya yang ditularkan oleh nyamuk genus Aedes aegypti. Jenis Aedes albopictus juga dilaporkan dapat menularkan penyakit ini. Menurut Suriptiastuti (2007), nyamuk vektor chikungunya adalah nyamuk Aedes yaitu Ae. albopictus untuk daerah rural atau pedesaan dan Ae. Aegypti untuk daerah urban atau perkotaan. (Suriptiastuti, 2007) Sehingga perlu diwaspadai dijumainya Ae. albopictus di lokasi penelitian ini karena merupakan daerah pedesaan. Tempat yang sering dijadikan sarang untuk bertelur adalah drum, batok kelapa, kaleng bekas, pot bunga, ember, vas bunga, tangki air tempat penampungan air pada lemari es, ban bekas dan botol-botol kosong serta salah satu yang lain adalah talang atap rumah yang tergenang sisa air hujan (Depkes RI). Di Dusun Cuntelan terdapat bekas batok kelapa dan bumbung bambu yang digunakan penduduk untuk menderes nira dan membuat gula kelapa. Tempat tersebut dapat digunakan untuk perkembangbiakan nyamuk Ae. albopictus, sehingga dapat berpotensi terjadinya penularan chikungunya.

B. Hasil Pengamatan Tempat Perkembangbiakan Larva

Hasil pengamatan tempat perkembangbiakan habitat nyamuk yang diduga sebagai vektor dapat dilihat dalam Tabel 1 dan Tabel 2.

**Tabel 1. Hasil Pengamatan Larva Nyamuk di Dusun Cuntelan**

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Habitat</th>
<th>Tumbuhan/Vegetasi</th>
<th>Kepadatan Larva (ekor/ciduk)</th>
<th>pH</th>
<th>Suhu (°C)</th>
<th>Predator</th>
<th>Alt (m dpl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kobakan 1</td>
<td>Serasah/semak</td>
<td>6</td>
<td>7</td>
<td>22</td>
<td>-</td>
<td>389</td>
</tr>
<tr>
<td>2.</td>
<td>Kobakan 2</td>
<td>Serasah/semak</td>
<td>5</td>
<td>6,5</td>
<td>22,5</td>
<td>Kecebong</td>
<td>387</td>
</tr>
<tr>
<td>3.</td>
<td>Kobakan 3</td>
<td>Serasah/semak</td>
<td>9</td>
<td>7</td>
<td>22,5</td>
<td>-</td>
<td>371</td>
</tr>
<tr>
<td>4.</td>
<td>Kobakan 4</td>
<td>Serasah/seruputian</td>
<td>0</td>
<td>6,5</td>
<td>23</td>
<td>Kecebong, capung</td>
<td>368</td>
</tr>
<tr>
<td>5.</td>
<td>Kobakan 5</td>
<td>Serasah/semak</td>
<td>27</td>
<td>7</td>
<td>23</td>
<td>-</td>
<td>354</td>
</tr>
<tr>
<td>6.</td>
<td>Kobakan 6</td>
<td>Serasah/seruputian</td>
<td>0</td>
<td>7</td>
<td>23,5</td>
<td>Kecebong, ikan kecil</td>
<td>348</td>
</tr>
</tbody>
</table>

Ket : Alt = ketinggian tempat

**Tabel 2. Hasil Pengamatan Larva Nyamuk di Dusun Borang**

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Habitat</th>
<th>Tumbuhan/Vegetasi</th>
<th>Kepadatan Larva (ekor/ciduk)</th>
<th>pH</th>
<th>Suhu (°C)</th>
<th>Predator</th>
<th>Alt (m dpl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sawah 1</td>
<td>Rumput, salvinia</td>
<td>13</td>
<td>7</td>
<td>23</td>
<td>Larva capung</td>
<td>135</td>
</tr>
<tr>
<td>2.</td>
<td>Sawah 2</td>
<td>Rumput, kangkung, salvinia</td>
<td>4</td>
<td>7</td>
<td>23,5</td>
<td>Larva capung, ikan</td>
<td>130</td>
</tr>
</tbody>
</table>

Ket : Alt = ketinggian tempat

Habitat perkembangbiakan nyamuk vektor ditemukan di sepanjang aliran sungai di lokasi penelitian berupa kobakan-kobakan ataupun aliran sungai kecil yang mengeriting dan genangan air dari tempat mengalirnya sumber mata air. Genangan air di sekitar lingkungan rumah penduduk yang bersemak ditemukan larva nyamuk *An. balabacensis*. Tempat perindukan larva nyamuk ditemukan di kobakan-kobakan atau genangan air yang ada serasah dengan tumbuhan atau vegetasi berupa semak-semak. Larva *An. maculatus* berkembangbiak dengan baik pada perairan atau genangan air yang terbuka baik mengalir maupun tidak mengalir dan dasarnya berupa batuan atau tanah.

Lingkungan tempat penelitian berupa dataran tinggi pegunungan sehingga masih banyak ditumbuhi tanaman keras yang menaungi. Tanaman tersebut menjadi peneduh yang memungkinkan terhalangnya secara langsung sinar matahari sampai ke permukaan tanah, berpengaruh terhadap habitat tempat perkembangbiakan nyamuk. Air untuk keperluan sehari-hari penduduk diperoleh dari sumber mata air yang mengalir dan menyebabkan banyak genangan berupa kobakan-kobakan berpotensi sebagai tempat
perkembangbiakan larva nyamuk yang diduga sebagai vektor, berpengaruh terhadap berkembangnya larva nyamuk yang dapat dimungkinkan menjadi penular berbagai penyakit.


Hasil pengamatan di tempat perkembangbiakan nyamuk berupa kobakan/genangan dan disekitar persawahan (Tabel 1 dan Tabel 2). Kepadatan larva nyamuk antara 4 sampai 27 ekor per cidukan. Adanya serasah, semak-semak, tanaman kangkung dan salvinia dapat mendukung habitat tempat perkembangbiakan larva nyamuk. Larva nyamuk ditemukan pada persawahan dan dapat berkembang biak pada air yang dangkal serta terdapat tanaman air seperti Salvinia, lumut dan tanaman padi. (Mardiana, 2005) Di beberapa tempat ditemukan kecebung (Rana sp) dan ikan-ikan kecil. Binatang tersebut merupakan predator larva nyamuk yang sangat berpengaruh terhadap perkembangbiakan larva nyamuk untuk dapat menjadi nyamuk dewasa. Dengan adanya predator akan menghambat perkembangbiakan larva untuk menjadi nyamuk dewasa karena akan dimangsa oleh predator yang ditemukan di habitat tersebut.

C. Hasil Pengukuran Temperatur Udara dan Kelembaban Udara

Hasil pengukuran suhu udara dan kelembaban di lokasi penangkapan nyamuk berkisar antara 20°C - 24°C, sedangkan kelembaban udara berkisar antara 80% - 92%.

Hasil pengukuran suhu udara (20°C - 24°C) dan kelembaban udara (80% - 92%) di lokasi penelitian merupakan suhu dan kelembaban yang mendukung perkembangbiakan nyamuk. Pada daerah yang beriklim tropis suhu antara 23 – 27°C nyamuk akan mengalami pertumbuhan yang bagus. Suhu optimum untuk perkembangan parasit dalam tubuh nyamuk berkisar antara 20°C – 30°C, sedangkan kelembaban 60% merupakan batas yang paling rendah untuk memungkinkan perkembangbiakan nyamuk.(Adrial, 2002)

D. Data Curah Hujan dan Hasil Penangkapan Nyamuk

Penangkapan nyamuk dilakukan pada bulan Juni (curah hujan 45 mm) dengan jumlah nyamuk tertangkap sebanyak 49 ekor di Dusun Cuntelan dan Oktober (curah hujan 0 mm), jumlah nyamuk tertangkap sebanyak 927 ekor di Dusun Borang.
Data laporan dari BMKG menunjukkan curah hujan bulan April sebesar 341 mm, Mei sebesar 200 mm dan bulan Juni hanya sebesar 45 mm. Selama bulan Juli - Oktober data di BMKG mencatat 0 mm. Ini menunjukkan hujan lebih besar terjadi pada bulan April sampai Mei dan jarang terjadi hujan pada bulan Juni. Bulan Juli sampai Oktober tidak terjadi hujan. Curah hujan yang jarang menyebabkan aliran sungai menjadi kering atau berkurang debit airnya pada saat penelitian sehingga menimbunkan adanya kobakan (genangan) di beberapa tempat lokasi penelitian. Dengan adanya genangan atau kobakan air tersebut menjadi tempat yang baik untuk tempat perkembangbiakan larva nyamuk.

Hasil pengukuran lingkungan abiotik yaitu suhu, kelembaban dan curah hujan menunjukan mendukung terhadap habitat perkembangbiakan keberadaan nyamuk tersangka vektor di lokasi, sehingga ada potensi terjadinya penularan penyakit.

KESIMPULAN

Nyamuk lebih sering dijumpai di luar rumah dan sekitar kandang ternak daripada di dalam rumah. Aktivitas menghisap darah yang tinggi pada malam hari sekitar pukul 18.00 – 02.00 dengan kepadatan tertinggi pada pukul 20.00-21.00 WIB.

Tempat perkembangbiakan larva nyamuk ditemukan di genangan-genangan air pada kobakan-kobakan di sekitar aliran sungai yang mengering dan di sekitar persawahan. Ditemukan juga sumber mata air penduduk.

Faktor lingkungan suhu, kelembaban dan curah hujan serta vegetasi mendukung terhadap habitat perkembangbiakan keberadaan nyamuk yang diduga sebagai vektor di lokasi penelitian.

SARAN

Perlu dilakukan penelitian setiap bulan selama satu tahun sehingga akan didapatkan hasil sepanjang musim (survei longitudinal).

UCAPAN TERIMA KASIH


DAFTAR KEPUSTAKAAN


http://pustakavet.wordpress.com/2011/02/10/anopheles-aconitus/ tgl 18-12-2012


http://www.map.ox.ac.uk/explore/mosquito-malaria-vectors/bionomics/anopheles-balabacensis/tgl 18-12-2012


Yogyakarta, Seminar Nasional Biologi UGM Yogyakarta.