ANALISIS OPTIMASI FAKTOR-FAKTOR PRODUKSI DAN PENDAPATAN USAHA BUDIDAYA UDANG WINDU DI KECAMATAN CILEBAR KABUPATEN KARAWANG

Optimalization Analysis For Factors Of Production And Revenues Of Windu Shrimp Farming In The Sub District Of Cilebar District Of Karawang

Laura Febrina¹, Asep Agus Handaka Suryana² dan Indah Riyantini²

Mahasiswa Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran

Dosen Fakultas Perikanan dan Ilmu Kelautan Universitas Padjadjaran

ABSTRAK

Penelitian ini bertujuan untuk menganalisis keragaan usaha dan optimasi penggunaan faktor produksi pada budidaya udang windu di kecamatan cilebar. Sampel sujumlah 36 petani diambil dengan metode purposive dari dua desa yaitu pusakajaya utara dan pusakajaya selatan. Data dianalisis menggunakan *linear programing*. Hasil analisis menunjukkan bahwa produksi rata-rata 743,32 kg/ha di Pusakajaya Selatan dan 765.75 kg/ha di pusakajaya Utara. R/C ratio adalah 1,33 di Pusakajaya Selatan dan 1,28 Pusakajaya Utara. Keuntungan aktual (Rp 52.525.730,01) masih lebih rendah dibandingkan keuntungan optimal (Rp 79.608.620). Faktor produksi yang penggunaannya melebihi optimal untuk mencapai keuntungan optimal adalah pakan (Rp 4.340.565), benih (Rp 284.304,78), pupuk (Rp 18.343,06) , tenaga kerja (Rp 753.013,44), obat (Rp 115.671,16), dan listrik (Rp 722.946,56). Hanya ada satu fatkor produksi yang belum optimal yaitu kapur.

Kata kunci: udang windu, optimasi, pendapatan, faktor produksi

ABSTRACT

This study aims to analyze the performance of the business and the optimization of the use of factors of production in windu shrimp farming in the sub district of Cilebar. A sample of 36 farmers were taken by purposive method of two villages, North and South Pusakajaya. Data were analyzed using linear programing. The analysis showed that the average yield was 743.32 kg / ha in South Pusakajaya and 765.75 kg / ha in North pusakajaya. R / C ratio was 1.33 and 1.28 in South Pusakajaya North Pusakajaya. The actual profits (US \$ 52,525,730.01) was still lower than optimal profit (Rp 79,608,620). Production factors usage exceeds to achieve optimal advantage were feed (Rp 4,340,565), seeds (Rp 284,304.78), fertilizer (Rp 18343.06), labor (US \$ 753,013.44), drugs (Rp 115,671.16), and electricity (Rp 722,946.56). There was only one production factor that has not been optimal in usage,calcium oxide.

Key words: windu shrimp, optimization, revenues, factors of production

PENDAHULUAN

Pada tahun 2014 terjadi penurunan produksi dari jumlah produksi udang windu di Kabupaten karawang sebesar 61.500 ton atau 33,42 persen dari total produksi ikan tambak pada tahun 2013 menjadi 49.705 ton akan tetapi harga mengalami sedikit peningkatan dibandingkan dengan nilai produksi tahun 2013. Jumlah produksi udang windu tersebut lebih besar dibandingkan produksi tahun 2012 sebesar 46.761 ton dan 46.738 ton pada tahun 2011. Dengan demikian pertumbuhan produksi selama periode 2011-2013 adalah 13,75 persen, akan tetapi pertumbuhan produksi tersebut tidak diimbangi dengan pertumbuhan nilai produksi yang hanya 2,8

persen (Badan Pusat Statistik Indonesia, 2011-2014) (Tabel 1.1).

Ketidak seimbangan antara produksi pertumbuhan dan pertumbuhan pendapatan sebagaimana data pada tabel 1.1 menunjukkan bahwa pembangunan perikanan khususnya budidaya udang windu di Kabupaten Karawang belum bisa dikatakan berhasil karena tujuan pembangunan perikanan bukan hanya untuk meningkatkan meningkatkan produksi tetapi juga kesejahteraan petani. Jika keadaan seperti ini berlaniut dikhawatirkan mengancam keberlangsungan usaha budidaya udang windu karena petambak tidak akan tertarik lagi untuk membudidayakannya.

Tabel 1.1 Produksi dan Nilai Produksi Udang Windu di Kabupaten Karawang Tahun 2011-2014

Tahun	Produksi (ton)	Nilai Produksi (000 Rp)
2011	46.738	280.426.200
2012	46.761	287.580.765
2013	61.500	296.772.555
2014	49.705	305.689.440
Pertumbuhan	13,75%	2,80%

(Sumber: Badan Pusat Statistik Kabupaten Karawang tahun 2011, 2012, 2013, 2014)

Oleh karena itu, penelitian ini menggunakan pendekatan teknis dalam hal model budidaya udang windu dan pendekatan sebagai untuk ekonomi sarana mengkaji masalah-masalah yang diteliti dan kemungkinan memberikan rekomendasi penggunakan faktor produksi pada tingkat yang optimum sehingga pembudidaya dapat memperoleh keuntungan maksimal produksi udang windu di daerah penelitian dapat ditingkatkan.

METODE PENELITIAN

Metode dasar yang digunakan adalah penelitian deskriptif analisis yaitu metode penelitian yang meneliti suatu objek pada sekarang atau sekurang-kurangnya masa jangka waktu yang masih terjangkau dalam ingatan responden. Data yang dikumpulkan kemudian disusun, dianalisis dan dijelaskan mengenai sehingga memberikan gambaran fenomena-fenomena terjadi, yang hipotesismenerangkan hubungan, menguji hipotesis serta mengambil kesimpulan dari hasil vang dianalisis (Nazir, 1998).

Penelitian ini menggunakan dua jenis data yaitu data primer dan sekunder. Data primer merupakan data utama yang dianalisis untuk menjawab perumusan masalah. Data primer diperoleh dari responden melalui wawancara langsung menggunakan panduan kuisioner yang sudah dipersiapkan. Responden

yang dimaksud adalah pembudidaya udang windu. Data sekunder digunakan sebagai data pendukung penelitian diperoleh dari literature, referensi, dan instansi terkait.

Metode analisis yang digunakan disesuaikan dengan rumusan masalah yang akan dijawab. Dalam penelitian ini ada dua rumusan masalah yang masing-masing rumusan tersebut akan dijawab dengan metode analisis yang berbeda. Metode linear programming di pakai untuk menjawab rumusan masalah penelitian.

HASIL DAN PEMBAHASAN

1. Keadaaan Umum Wilayah

Penelitian ini di lakukan di wilayah Kecamatan Cilebar Kabupaten Karawang. Wilayah Kecamatan Cilebar mempunyai luas km^2 . 64.20 Secara keseluruhan wilayah Kecamatan Cilebar berada pada dataran rendah dengan ketinggian 1-5 meter dari permukaan laut.

2. Karakteristik Responden

Karakteristik responden dalam penelitian ini meliputi karakteristik sosial yang meliputi umur pembudidaya, tingkat pendidikan pembudidaya, pengalaman berbudidaya, luas tambak, dan jumlah tenaga kerja.

2.1 Karakteristik Responden Berdasarkan Umur

Tabel 4.1 Karakteristik Responden Berdasarkan Umur

	·	***************************************
Umur (tahun)	Jumlah (orang)	Persentase (%)
≤ 24	0	0,00
25 - 55	33	91,67
≥ 56	3	8,33
Jumlah	36	100,00

Tabel 4.1 menunjukkan bahwa sebagian besar responden berusia diantara 25-55 tahun (91,67%) dan sisanya adalah responden berusia di atas 55 tahun (8,33%). Artinya bahwa pembudidaya udang Windu di

Kecamatan Cilebar masih didominasi oleh pembudidaya berusia produktif sehingga diharapkan masih ada kesempatan pengembangan teknik budidaya udang melalui introduksi baru.

2.2 Karakteristik Responden Berdasarkan Tingkat Pendidikan

Tabel 4.2 Karakteristik Responden Berdasarkan Tingkat Pendidikan

Pendidikan	Jumlah (orang)	Persentase (%)
SD	12	33,33
SLTP	8	22,22
SLTA	15	41,67
Diploma	1	2,778
Jumlah	36	100

Tabel 4.2 menunjukkan bahwa sebagian pembudidaya udang windu di lokasi penelitian berpendidikan setingkat SLTA yaitu dengan jumlah 15 orang atau 41,67% dari total

responden. Terbanyak kedua adalah pemudidaya berpendidikan SD sebanyak 12 orang atau 33,33 % dari total responden.

2.3 Karakteristik Responden Berdasarkan Pengalaman Membudidayakan Udang

Tabel 4.3 Karakteristik Responden Berdasarkan Pengalaman

Pengalaman (Tahun)	Jumlah (orang)	Persentase (%)
<u>≤ 5</u>	3	8,33
≥6	33	91,67
Jumlah	36	100,00

Berdasarkan Tabel 4.3 diketahui 91,67% dari 36 bahwa terdapat sebanyak responden memiliki pengalaman membudidayakan udang windu 6 tahun atau lebih yang mana responden tersebut layak dikatakan berpengalaman dan hanya terdapat 8,33% responden yang memiliki pengalaman membudidayakan udang windu dibawah 5 mana bisa dikatakan tahun yang baru membudidayakan berpengalaman udang windu.

2.4 Karakteristik Responden Berdasarkan Luas Tambak Garapan

Rata-rata kepemilikan tambak di lokasi penelitian adalah 1,81 hektar dengan kepemilikan paling sempit adalah 0,5 hektar dan paling luas 8 hektar. Sebagian besar responden yaitu 50% dari total responden memiliki tambak dengan luas 1 hektar atau kurang (Tabel 4.4)

Tabel 4.4 Karakteristik Responden Berdasarkan Luas Garapan

Luas Garapan (hektar)	Jumlah (orang)	Persentase (%)
≤ 1	18	50,00
1,1-2	12	33,33
> 2	6	16,67
Jumlah	36	100,00

3. Keragaan Budidaya Udang Windu di Kecamatan Cilebar

3.1. Pengelolaan Usaha Budidaya Udang Windu

Kegiatan budidaya tambak udang windu di Kecamatan Cilebar berdasarkan komoditasnya adalah sistem budidaya yaitu kegiatan budidaya yang hanya memelihara satu komoditas saja, yaitu udang windu. Dalam pengelolaan tambak untuk budidaya udang windu, pembudidaya melakukan tahapan-tahapan sebagai berikut:

A. Persiapan petak tambak

Petak tambak dikuras airnya kemudian tanah dasar atau caren diangkat lumpurnya dan di "teplok" pada sisi-sisi tanggul. Hal ini kemungkinan dilakukan untuk menutup adanya lubang-lubang perembesan sekaligus untuk memperbaiki tanggul. Setelah lumpur diangkat, tanah dasar tambak dan pelataran tambak diratakan dan digemburkan dengan menggunakan cangkul. Setelah itu, tambak dijemur selama ± 1 minggu. Setelah tanah mengering, kapur dan pupuk ditebarkan ke dalam tambak. Kapur berfungsi untuk dan pupuk berfungsi untuk memperbaiki pH menambahkan pakan. Setelah itu. dimasukkan ke dalam tambak setinggi ± 40 cm melalui pintu air, paralon, atau dengan bantuan pompa air. Air yang dimasukkan ke disaring untuk dalam tambak mencegah masuknya hama dan penggangu. Sebelum benur ditebar, lahan tambak yang sudah terisi air didiamkan selama 2-5 hari.

B. Penebaran benih

Ukuran benih yang digunakan berkisar antara Pl-10 sampai Pl-12 dengan harga Rp. 40,- per ekor. Sebelum benih ditebar, air tambak dimasukkan dalam kemasan kantung plastik yang berisi benih dengan perbandingan 1:1, artinya jika di dalam kantung plastik

terdapat 1 ml air maka air tambak yang dimasukkan juga sebanyak 1 ml. Proses ini disebut aklimatisasi yaitu penyesuaian terhadap keadaan lingkungan berbeda yang berguna untuk mencegah terjadinya stress pada benih. Selama proses aklimatisasi, benih di dalam kemasan kantung plastik didiamkan selama 10-15 menit sebelum akhirnya di tebar ke dalam tambak. Kepadatan benih yang ditebar

C. Pemeliharaan

Masa pemeliharaan udang windu ratarata selama 3-4 bulan. Pemberian pakan tambahan berupa pelet, ikan, keong dan gayas dilakukan setelah masa pemeliharaan sekitar 1 bulan, tergantung dari pakan alami yang terdapat di tambak. Jika pakan alami sudah berkurang bahkan habis maka pemberian pakan tambahan dilakukan. Tanda dari pakan alami habis yaitu banyaknya benur oslah yang berenang ke permukaan. Frekuensi pemberian pakan dilakukan sebanyak dua kali sehari (pagi dan sore) dengan jumlah pakan yang diberikan per hari 5% dari berat badannya. Setelah ± 0,5 bulan dari awal pemberian pakan tambahan, frekuensi pemberian pakan ditingkatkan yaitu sebanyak tiga kali sehari (pagi, siang, dan sore) dengan jumlah pakan yang diberikan per hari sebesar 4% dari berat badannya. Kemudian pemberian pakan ditingkatkan sebanyak empat kali sehari (pagi, siang, sore, dan malam) pada saat satu bulan menjelang panen dengan jumlah pakan yang diberikan per hari sebesar 3% dari berat badannya.

Pemanenan

Pemanenan udang windu dilakukan setelah 3-4 bulan. Tetapi terkadang panen terpaksa harus dilakukan setelah 1,5-2 bulan karena udang terserang penyakit. Rata-rata kegiatan budidaya udang windu di Kecamatan

Cilebar dilakukan sebanyak dua kali dalam satu tahun sehingga dalam satu tahun dilakukan dua kali pemanenan.

Kegiatan panen dilakukan dengan cara membuang air tambak melalui paralon dengan bantuan pompa air. Di sekitar paralon di pasang waring/wadong sehingga udang yang ikut terbawa arus air akan masuk ke dalam waring/wadong tersebut. Setelah air surut

biasanya dilakukan pendorongan ke arah waring/wadong dengan menggunakan bantuan karung yang berisi rumput. Jika masih ada sisa tidak terbawa udang vang dilakukan mengambilan langsung dengan tangan. Peralatan panen biasanya disediakan oleh buruh panen. Kegiatan panen dilakukan oleh buruh dengan sistem borongan dengan biaya Rp 500.000,- per petak.

3.2 Penggunaan Faktor Produksi (Input) Budidaya Udang Windu

A. Luas Tambak Garapan

Tabel 4.5 Distribusi Pembudidaya Berdasarkan Luas Tambak Garapan

Luas Garapan	Pusakajaya Selatan		Pusaka	jaya Utara
(hektar)	Jumlah (orang)	Persentase (%)	Jumlah (orang)	Persentase (%)
≤ 1	5	27,78	13	72,22
1,1-2	7	38,89	5	27,78
> 2	6	33,33	0	0,00
Jumlah	18	100,00	18	100,00

Tabel 4.5 menunjukkan bahwa luas tambak garapan di dua lokasi penelitian terdapat perbedaan. Sebagian besar pembudidaya di desa Pusakajaya Selatan menggarap tambak dengan luas 1,1-2 hektar yaitu sebanyak 38,89% responden dan terdapat 33,33% responden yang mempunyai

garapan tambak seluas di atas 2 hektar. Sedangkan pembudidaya di desa Pusakajaya Utara sebagian besar menggarap tambak dengan luas kurang atau sama dengan 1 hektar dan tidak terdapat responden yang menggarap tambak dengan luas di atas dua hektar.

B. Sumber Modal

Tabel 4.6 Distribusi Pembudidaya Berdasarkan Sumber Modal

Sumber modal	Pusakaja	aya Selatan	Pusaka	jaya Utara
	Jumlah (orang)	Persentase (%)	Jumlah (orang)	Persentase (%)
Mandiri	4	22,22	15	83,33
Pinjaman	12	66,67	3	16,67
Mandiri + pinjaman	2	11,11	0	0,00
Jumlah	18	100,00	18	100,00

Tabel 4.6 menunjukkan adanya penelitian perbedaan di kedua lokasi berdasarkan pada distribusi sumber modal yang digunakan pembudidaya. Sebagian besar pembudidaya Pusakaiava di menggunakan modal usaha dari hasil pinjaman sedangkan pembudidaya di Pusakajaya Utara sebagian besar menggunakan modal sendiri (mandiri). Perbedaan tersebut mungkin dikarenakan adanya perbedaan distribusi luas

pada tambak garapan kedua lokasi sebagaimana ditunjukkan pada tabel 4.5 dimana sebagian besar pembudidaya Pusakajaya Selatan menggarap tambak dengan luasan di atas 1 hektar sedangkan di Pusakajaya Utara sebagian besar menggarap tambak dengan luasan satu hektar atau kurang. Tambak yang lebih luas membutuhkan modal lebih banyak sehingga yang petani membutuhkan dana pinjaman.

C. Benih

Tabel 4.7 Distribusi Pembudidaya Berdasarkan Kepadatan Benih

Kepadatan Benih (ekor/hektar)	Pusakaj	aya Selatan	Pusaka	jaya Utara
	Jumlah	Persentase	Jumlah	Persentase
	(orang)	(%)	(orang)	(%)
< 20.000	0	0,00	0	0,00
20.000-100.000	18	100,00	17	88,89
>100.000	0	0,00	1	5,56
Jumlah	18	100,00	18	100,00

Tabel 4.7 menunjukkan bahwa berdasarkan pada kepadatan benihnya, semua responden di desa Pusakajaya Selatan menggunakan teknlogi semi intensif dan

responden Pusakajaya utara sebagian besar menggunakan teknlogi semi intensif serta terdapat satu responden yang menggunakan teknologi intensif di Pusakajaya utara.

D. Pupuk

Tabel 4.8 Distribusi Pembudidaya Berdasarkan Penggunaan Kapur

Kapur	Pusakajaya Selatan		Pusaka	jaya Utara
(kg/ha)	Jumlah	Persentase	Jumlah	Persentase
	(orang)	(%)	(orang)	(%)
≤500	5	27,78	0	0,00
501-1000	13	72,22	17	94,44
>1000	0	0,00	1	5,56
Jumlah	18	100,00	18	100,00

(Sumber: data primer, 2016)

Tabel 4.8 menunjukkan bahwa Pusakajaya pembudidaya di desa Utara menggunakan kapur dengan dosis yang lebih banyak dibandingkan dengan pembudidaya Pusakajaya Selatan. Menurut Direktorat Jenderal Perikanan Budidaya Balai Besar Pengembangan Budidaya Air Payau (2007), alkalinitas dipertahankan pada nilai 90 - 150 ppm. Alkalinitas yang rendah atau kurang 90 ppm harus dilakukan pengapuran sehingga alkalinitas mencapai angka sesuai dengan kisaran. vang digunakan Jenis kapur disesuaikan dengan kondisi pH air sehingga pengaruh pengapuran tidak membuat pH air tinggi.

E. Probiotik dan Vitamin

Biaya yang dikeluarkan pembudidaya untuk pembelian probiotik di kedua lokasi penelitian adalah sama yaitu Rp 3.000.000,-

/hektar yang artinya bahwa kuantitas probiotik yang dimasukkan dalam tambak adalah relatif sama. Hal ini kurang tepat karena kebutuhan atas kuantitas atau dosis probiotik sebaiknya mempertimbangkan kepadatan benih. Semakin padat benih yang ditebar maka semakin banyak limbah yang dihasilkan baik oleh sisa pakan maupun kotoran udang yang harus diuraikan sehingga membutuhkan probiotik yang lebih banyak. Fakta di lokasi penelitian menunjukkan bahwa kepadatan benih adalah bervariasi (Tabel 4.7)

Selain probiotik. pembudidaya vitamin untuk meningkatkan menggunakan nutrisi pada pakan udang dan meningkatkan imunitas udang serta meningkatkan elative percent survival-nya sehingga meningkatkan budidaya. produktivitas dalam Untuk pembudidaya keperluan pembelian vitamin, membutuhkan biaya Rp 200.000,-/hektar.

F. Pakan

Tabel 4.9 Distribusi Pembudidaya Berdasarkan Jumlah Pakan Buatan

Pakan Buatan	Pusakaj	aya Selatan	Pusaka	jaya Utara
(kg/hektar)	Jumlah (orang)	Persentase (%)	Jumlah (orang)	Persentase (%)
≤ 2.775	15	83,33	15	83,33
> 2.775	3	16,67	3	16,67
Jumlah	18	100,00	18	100,00

Tabel 4.9 menunjukkan bahwa terdapat 3 responden di desa Pusakajasa Selatan yang berlebihan dalam menggunakan pakan buatan (pelet) karena pakan dengan jumlah > 2.775 adalah untuk budidaya kg/ha teknologi intensif, sedangkan di desa Pusakajaya Selatan tidak ada pembudidaya yang menggunakan berdasarkan teknologi intensif kepadatan benihnya (Tabel 4.7). Terdapat 2 responden di desa Pusakajasa Utara yang berlebihan dalam menggunakan pakan buatan (pelet) karena sebenarnya hanya ada 1 responden di desa Pusakajasa Utara vang menggunakan teknologi intensif (Tabel 4.7)

Pakan yang baik memiliki konversi sebesar 1,8-2. Artinya untuk menghasilkan udang sebanyak 1 kg diperlukan pakan sebanyak 1,8 sampai 2 kg. Konversi pakan responden pada dapat diketahui dari perbandingan rata-rata pemberian pakan dan produksi udang windu (Suyanto dan Mujiman, 2005). Semakin rendah nilai konversi maka pakan udang windu tersebut semakin baik. Rata-rata pemberian pakan pabrik di desa Pusakajaya Selatan sebanyak 2.128,40 kg/ha dan rata-rata produksi udang windu di desa Pusakajaya Selatan sebesar 743,32 kg/ha sehingga didapat nilai konversi pakan udang windu di desa Pusakajaya Selatan sebesar untuk menghasilkan 2,86. Artinya udang sebanyak 1 kg diperlukan pakan sebanyak 2,86 kg. Sedangkan Rata-rata pemberian pakan pabrik di desa Pusakajaya Utara sebanyak 2.517,13 kg/ha dan rata-rata produksi udang windu di desa Pusakajaya Utara sebesar 765,75 kg/ha sehingga didapat nilai konversi pakan udang windu di desa Pusakajaya Utara sebesar 3,29. Artinya untuk menghasilkan udang sebanyak 1 kg diperlukan pakan sebanyak 3,29 kg. Artinya, pemberian pakan tambahan pada kedua lokasi penelitian tidak efektif karena konversi pakan terhadap berat udang lebih besar dari 2.

G. Tenaga Kerja

Tenaga kerja yang dipekerjakan pembudidaya dalam mengelola tambak dapat dikelompokkan menjadi tenaga kerja tetap dan tidak tetap. Tenaga kerja tetap dipekerjakan sebagai tenaga teknis dan operator di tambak dengan gaji tetap Rp 1.500.000,-/orang/bulan. Setiap hektar tambak membutuhkan 2-3 orang tenaga kerja tetap. Tenaga kerja tidak tetap dipekerjakan pada saat persiapan lahan tambak dan pada saat panen dengan sistem upah borongan.

3.3. Produksi dan Penerimaan

Produksi udang windu dikelompokkan menjadi dua grade yaitu grade A dan grade B. Udang yang masuk kelompok grade A adalah udang yang mempunyai ukuran terdiri dari 15-25 ekor/kg dan grade B adalah udang yang mempunyai ukuran terdiri dari 30-35 ekor/kg. Grade tersebut mempengaruhi harga yang diterima. Grade A dihargai Rp 180.000,-/kg dan grade B dihargai 90.000/kg. Produksi lokasi udang windu di dua penelitian ditunjukkan pada Tabel 4.10

Tabel 4.10 menunjukkan bahwa (produktivitas) produksi perhektar udang windu di Pusakajaya Utara lebih tinggi (765,75 kg) dibandingkan produksi di desa Pusakajaya Selatan (743,32 kg). Rerata produksi per hektar pada kedua lokasi penelitian masih jauh dibawah produksi udang windu di Balai Besar Pengembagan Budidaya Air Payau sebesar 1.800 kg/hektar untuk budidaya dengan teknologi semi intensif.

Tabel 4.10 Rerata Produksi Udang Windu per hektar per siklus di Kecamatan Cilebar Tahun 2015

Keterangan	Produksi (kg)		
Keterangan	Pusakajaya Selatan	Pusakajaya Utara	
Grade A	478,10	503,99	
Grade B	265,22	261,77	
Total	743,32	765,75	

Dengan diketahuinya jumlah produksi tiap grade beserta harganya (Rp 180.000, grade A dan Rp 90.000 grade B) maka dapat diketahui jumlah penerimaan pembudidaya di kedua lokasi penelitian sebagaimana ditunjukkan pada Tabel 4.11 berikut:

Tabel 4.11 Rerata Penerimaan Hasil Udang Windu per hektar per siklus di Kecamatan Cilebar Tahun 2015

Votorongon	Penerima	nan (Rp)
Keterangan	Pusakajaya Selatan	Pusakajaya Utara
Grade A	86.058.500,00	90.717.666,67
Grade B	23.869.916,67	23.559.083,33
Total	27.531.392,97	24,994,337.04

(Sumber: data primer, 2016)

4. Analisis Usaha Budidaya Udang Windu di Kecamatan Cilebar

Tabel 4.12 Analisis Usahatani Udang Windu di Desa Pusakajaya Selatan dan Pusakajaya Utara

17	Jumlah (Rp)		
Komponen	Pusakajaya Selatan	Pusakajaya Utara	
Biaya Variabel			
Benih	2.405.280,00	2.800.000,00	
	(60.132 ekor, @ Rp 40)	(70.000 ekor, @ Rp 40)	
 Pakan pabrik 	34.054.931,53	40.274.074,07	
	(2.128,4 kg,@ Rp 16.000)	(2.517,13 kg, @ Rp 16.000)	
Probiotik	3.000.000,00	3.000.000,00	
Vitamin	200.000,00	200.000,00	
Urea	200.000,00	200.000,00	
	(100 kg, @ Rp 2.000)	(100 kg, @ Rp 2.000)	
■ ZA	120.000,00	120.000	
	(50 kg, @Rp 2.400)	(50 kg, @Rp 2.400)	
■ TSP	187.500,00	187.500,00	
	(75 kg,@Rp 2.500)	(75 kg,@Rp 2.500)	
Kapur	553.333,33	395.555,56	
	(1.383,33 kg,@Rp 400)	(988,89 kg,@Rp 400)	
 Tenaga kerja tetap 	15.000.000,00	15.000.000,00	
	(2 org,@ Rp 1,5jt, 5bln)	(2 org,@ Rp 1,5jt, 5bln)	
Biaya Tetap			
Persiapan lahan	1.015.793,65	819.727,78	
 Pemeliharaan tambak 	100.000,00	100.000,00	
Pemanenan	1.060.185,19	1.527.777,78	
Listrik	20.000.000,00	20.000.000,00	
Sewa lahan	3.000.000,00	3.000.000,00	

Penyusutan pemeliharaan (kincir dan diesel)	dan alat	4.500.000,00	4.500.000,00
A. Total biaya		82.397.023,70	89.282.412,96
Penerimaan			
■ Grade A		86.058.500,00	90.717.666,67
	((478,10 kg, @ Rp 180.000)	(503,99, @ Rp 180.000)
Grade B		23.869.916,67	23.559.083,33
	((265,22 kg, @ Rp 90.000)	(261,77, @ Rp 90.000)
B. Total Penerimaan		109.928.416,67	114.276.750
C. Keuntungan (B-A)		27.531.392,97	24,994,337.04
D. R/C Ratio (B/A)		1,33	1,28
E. Keuntungan per kg	Ş	37.038,41	32.640,34

4.12 Tabel menunjukkan bahwa budidaya udang windu di kecamatan Cilebar adalah menguntungkan yang ditunjukkan oleh nilai R/C > 1, yaitu 1,33 di desa Pusakajaya Selatan dan 1,28 di desa Pusakajaya Utara. Keuntungan per kilogram udang pembudidaya di desa Pusakajaya Selatan lebih besar dibandingkan di desa Pusakajaya Utara yaitu 37.038,41 berbanding Rp 32.640,34. Rp Meskipun produksi per hektar di Pusakajaya Utara lebih besar dari Pusakajaya Selatan (Tabel 4.10) tetapi R/C lebih kecil karena biaya budidaya di Pusakajaya Utara lebih besar. Komponen biaya terbesar untuk kedua dalam budidaya udang windu adalah untuk pakan tambahan buatan pabrik yaitu 36,4% dari total biaya di desa Pusakajaya Selatan dan 33,6% dari total biaya di desa Pusakajaya Utara.

5. Optimalisasi Budidaya Udang Windu

Guna mengetahui penggunaan output optimal dan mengetahui keuntungan maksimal pada kedua lokasi penelitian dilakukan analisis optimasi menggunakan linear programing dengan bantuan program software LINDO.

Tingkat Keuntungan pada Kondisi 5.1 **Optimal**

Berdasarkan hasil perhitungan menggunakan Program LINDO, kondisi optimal penggunaan input-input produksi di dua desa lokasi lokasi penelitian dengan menggunakan 7 fungsi kendala tercapai hanya pada satu iterasi. Keuntungan yang diperoleh pada kondisi optimal sebesar Rp 79.608.620, sedangkan keuntungan yang diperoleh kedua lokasi pada kondisi aktual selama satu siklus budidaya udang windu Rp 52.525.730,01 (Rp 27.531.392,97 + Rp 24,994,337.04).

tersebut menunjukkan bahwa Hasil penggunaan input-input produksi di empat lokasi kandang ayam yang terdapat pada kedua desa belum optimal karena keuntungan total yang diterima masih dapat ditingkatkan. Peningkatan keuntungan tersebut sebesar 51,56% persen atau senilai dengan Rp 27.082.889,99 dari keuntungan aktual yang diperoleh selama periode penelitian. Nilai Reduced Cost pada masing-masing lokasi kandang dapat dilihat pada Tabel 4.13.

Tabel 4.13 Nilai Reduced Cost Hasil Optimasi Usaha Budidaya Udang Windu di Masing-Masing Lokasi

Lokasi Budidaya	Value	Reduced Cost
Pusakajaya Selatan	716,45	0,00
Pusakajaya Utara	0,00	75.219,39

Nilai reduced cost yang mempunyai nilai lebih besar dari nol dapat diartikan sebagai pengurangan keuntungan yang diterima peternak apabila menambah produksi kilogram udang. Besaran nilai satu pengurangan keuntungan tersebut sama dengan nilai reduced cost nya.

Berdasarkan tabel 4.13, lokasi budidaya udang windu di Pusakajaya Utara mempunyai nilai *reduced cost* 75.219,39,

artinya Kecamatan Cilebar akan mendapat kerugian sebesar Rp 75.219,39 menambah produksi 1 kg udang di Pusakajaya Lokasi Pusakajaya Utara. Utara harus meningkatkan keuntungan per kilogram udang yang dijual agar masuk dalam solusi optimal. Keuntungan per kilogram udang yang ditingkatkan harus lebih besar dari Rρ 75.219.39 agar Pusakajaya Utara masuk dalam solusi optimal.

5.2 Tingkat Penggunaan Input dan Output pada Kondisi Optimal

Tabel 4.14 Nilai *Slack or Surplus* dan *Dual Price* Penggunaan Input-input Produksi Budidaya Udang Windu di Kecamatan Cilebar

	White the rectangual Chebar		
Kendala	Slack or Surplus	Dual Price	
Pakan	4.340.565,00	0,00	
Benih	284.304,78	0,00	
Pupuk	18.343,06	0,00	
Tenaga kerja	753.013,44	0,00	
Obat	115.671,16	0,00	
Listrik	722.946,56	0,00	
Kapur	0,00	149,27	

Tabel 4.14 menunjukkan bahwa pada kondisi optimal ada sisa atau kelebihan pakan, benih, pupuk (urea,TSP, dan ZA), tenaga kerja (tenaga kerja tetap, persiapan lahan, dan pemanenan), obat (probiotik dan vitamin), dan listrik, sedangkan untuk kapur habis atau tidak ada sisa. Untuk mencapai kondisi optimal, ada sisa biaya pakan sebesar Rp 4.340.565 artinya pakan yang digunakan pembudidaya

berlebihan atau terlalu banyak. Hal tersebut juga ditunjukan besarnya konversi pakan untuk mencapai 1 kg udang. Sebaiknya untuk mencapai 1 kg udang dibutuhkan pakan 1,8-2 kg pakan (Suyanto dan Mujiman, 2005), tetapi di Pusakajaya Selatan dibutuhkan 2,86 kg pakan dan 3,29 kg di Pusakajaya Utara. Artinya, pemberian pakan tambahan pada kedua lokasi penelitian tidak efektif.

5.3 Analisis Sensitivitas

Tabel 4.15 Hasil Analisis Sensitivitas Koefisien Fungsi Tujuan

Variabel	Objective Coefficient Ranges		
	Current Coef.	Allowable Increase	Allowable Decrease
Pusakajaya Selatan	111.115,23	Infinity	77.489,72
Pusakajaya Utara	32,640,34	75.219,39	Infinity

Tabel 4.15 menunjukkan bahwa koefisien fungsi tujuan pada desa Pusakajaya Selatan dapat ditambah sampai tak terhingga sedangkan lokasi Pusakajaya Utara hanya dapat ditingkatkan koefisien tujuannya maskimal sebesar Rp 75.219,39/kg udang. tersebut menunjukkan Nilai batas bahwa tingkat keuntungan akan meningkat koefisien fungsi tujuan meningkat lebih kecil atau sama dengan batas 75.219,39.

Besar nilai peningkatan keuntungan tersebut sama dengan selisih keuntungan dengan kondisi awal kondisi setelah perubahan dilakukan dikalikan dengan tingkat produksi optimal. Jika perubahan koefisien tujuan melebihi nilai allowable fungsi increase, maka tingkat produksi optimal akan berubah.

Koefisien fungsi tujuan untuk masing-masing lokasi budidaya mempunyai nilai batas

penurunan dengan nilai tertentu. seperti terlihat pada Tabel 4.15. Nilai allowable decrease menunjukkan bahwa tingkat sangat produksi optimal peka terhadap penurunan koefisien fungsi tujuan. Hal tersebut terlihat selisih antara nilai dari koefisien fungsi tujuan dengan batas penurunan fungsi tujuan yang kecil. Tingkat penurunan koefisien fungsi tujuan yang tidak melebihi batas sensitivitasnya, tidak akan merubah tingkat produksi optimal, tetapi hanya merubah nilai dari fungsi tujuan.

Analisis sensitivitas dapat juga dilakukan dengan merubah ruas kanan kendala pembatas dapat dilihat pada Tabel 4.16. Besarnya nilai perubahan keuntungan optimal sama dengan jumlah perubahan RHS dikalikan dengan nilai *dual*-nya.

Tabel 4.16 Hasil Analisis Sensitivitas Fungsi Kendala

Kendala	Righthand Side Ranges		
	Current Coef.	Allowable Increase	Allowable Decrease
Pakan	37.164.504,00	Infinity	4.340.565,00
Benih	2.602.640,00	Infinity	284.304,78
Pupuk	507.500,00	Infinity	18.343,06
Tenaga kerja	17.211.742,00	Infinity	753.013,44
Obat	3.200.000,00	Infinity	115.671,16
Listrik	20.000.000,00	Infinity	722.946,56
Kapur	533.333,31	19.999,65	533.333,31

Tabel 4.16 menunjukkan bahwa hanya fungsi kendala kapur yang mempunyai batasan yaitu kenaikan ketersediaannya sebesar Rp.19.999,65 Jika ketersediaan kapur dinaikkan melebihi batas nilai Rp.19.999,65 maka dapat menyebabkan tingkat produksi optimalnya berubah. Sedangkan enam fungsi kendala lainnya mempunyai tidak batas peningkatan yang berarti bahwa berapapun peningkatan biaya pakan, benih, pupuk, tenaga kerja, obat, dan listrik tidak akan merubah produksi optimal.

Batas penurunan untuk enam fungsi kendala sudah dijelaskan sebagaimana pada Tabel 4.14. Sedangkan untuk kendala kapur, jika terjadi penurunan melebihi nilai Rp 533.333,31 maka akan merubah produksi optimal tetapi jika penurunannnya kurang dari nilai Rp 533.333,31 maka tidak akan merubah produksi optimal.

1 Kesimpulan

1. Sebagian besar pembudidaya udang windu di kecamatan Cilebar menggunakan teknologi intensif semi dengan produksi rata-rata 743,32 kg/ha di Pusakajaya Selatan dan 765.75 kg/ha di Pusakajaya Utara. R/C ratio adalah 1,33

- di Pusakajaya Selatan dan 1,28 Pusakajaya Utara
- 2. Hasil Optimasi:
 - a. Keuntungan yang dicapai pembudidaya di Kecamatan Cilebar belum maksimal atau masih ada selisih antara produksi aktual dengan produksi opimal yaitu sejumlah 51,56% dari produksi aktual
 - b. Terjadi kelebihan penggunaan pakan (Rp 4.340.565), benih (Rp 284.304,78), pupuk (Rp 18.343,06) , tenaga kerja (Rp 753.013,44), obat (Rp listrik 115.671,16), dan (Rp pembudidaya 722.946,56) oleh di Kecamatan Cilebar untuk mencapai produksi optimal.

2 Saran

Guna meningkatkan keuntungan, maka pembudidaya dapat mengurangi input pakan (maksimal Rp 4.340.565), benih (maksimal Rp 284.304,78), pupuk (Rp maksimal 18.343,06), tenaga kerja (maksimal 753.013,44), obat (maksimal Rp 115.671,16), dan listrik (maksimal Rp 722.946,56) karena tidak merubah produksi optimal.

DAFTAR PUSTAKA

- Balai Besar Pengembagan Budidaya Air Payau, 2007. Penerapan Best Management Practice (BMP) pada Budidaya Udang Windu Intensif.
 Balai Besar Pengembagan Budidaya Air Payau. Jepara
- Balai Besar Pengembagan Budidaya Air Payau, 2011. *Analisis Usaha Perikanan Budidaya*. Pusat Penyuluhan Kelautan dan Perikanan. Jakarta
- BPS, 2014. *Karawang dalam Angka* 2013. Karawang
- Dibertin, D.L. 1986. Agricultural Production Economics. Macmillan Publishing Co.New York
- Ghozali, Imam. 2011. *Aplikasi Analisis Multivariate dengan Program SPSS*.
 Universitas Diponegoro press.
 Semarang
- Ginting, Firdaus, 2006. Analisis Kelayakan Finansial Usaha Budidaya Udang Windu di PT Kuala Laras Sentana, Kecamatan Medang Deras, Kabupaten Asahan, Propinsi Sumut. *Skripsi*. IPB
- Gujarati, Damodar. 1997. *Ekonometrika Dasar*. Erlangga. Jakarta
- Gunarto, T., B. R., Tampangallo, dan Muliani. 2006. Budidaya Udang Vaname Pennaeus monodon di Tambak dengan Penambahan Probiotik. J. *Ris. Akuakultur.* 1(3): 303-313.
- Khazani, I., 2007. Aplikasi Probiotik Menuju Sistem Budidaya Perikanan Berkelanjutan. *Media Akuakultur*, 2(2): 86-90.
- Nasution, Y.H. 2005. Analisis Efisiensi Faktor-Faktor Produksi Udang Tambak di Indonesia. Skripsi. Institut Pertanian Bogor.
- Nazir, 1998. *Metode Penelitian*. Ghalia Indonesia. Balai Pustaka Aksara. Jakarta
- Nicholson, W., 2002, *Mikroekonomi Intermediate dan Aplikasinya*. Edisi
 kedelapan (terjemahan). Erlangga.
 Jakarta

- Pappas, J.L., dan Hirschey, M. 1995. *Ekonomi Manjerial*. Bina Rupa Aksara. Jakarta.
- Salvatore, D.,1995. *Teori Mikro Ekonomi*. Erlangga. Jakarta
- Soekartawi. 1995. Analisis Usahatani. Universitas Indonesia Press. Jakarta
- Soekartawi. 2003. *Teori Ekonomi Produksi dengan Pokok Bahasan Analisis Cobb-Douglas*. PT. Raja Grafindo Persada. Jakarta
- Sudarman, Ari. 1999. *Teori Mikro Jilid I.* BPFE.Yogyakarta
- Sunardi, 2003. Analisis Efisiensi Faktor Produksi Usaha Budidaya Udang Windu di Kecamatan Juwana Kabupaten Pati. *Tesis*. Undip
- Susilo,H., 2007. Analisis Ekonomi Usaha Budidaya Tambak dan Faktor-Faktor yang Mempengaruhi Produksi. *Jurnal EPP* Vol.4 No.2: 19-23
- Yasin,M., 2013. Analisis Ekonomi Usaha Tambak Udang Berdasarkan Luas ahan di Kabupaten Parigi Moutong Provinsi Sulawesi Tengah. *Jurnal Ilmiah AgrIBA* No.2 Edisi September 2013 2015-2015