CIRI ANATOMI, SIFAT FISIS DAN MEKANIS, DAN KEGUNAAN BATANG LONTAR

(Anatomical Features, Physical and Mechanical Properties, and Uses of Lontar Stem)

Oleh / By:
Mody Lempang¹, M. Asdar¹ & Alfrida Limbong¹

¹Balai Penelitian Kehutanan Makassar, Jl. Perintis Kemerdekaan Km. 16, P.O. Box 1560, Makassar
Telp./Fax.: (0411) 554049/554058

Diterima 23 Mei 2007; disetujui 17 September 2008

ABSTRACT

This research was carried out to look into anatomical feature, physical and mechanical properties, and uses of lontar (Borassus flabellifer Linn.) stem, which is already old or unproductive for juice tapping (production), taken from the community forest in Jeneponto and Bone District, South Sulawesi Province.

Lontar stem is divided into three parts i.e. bark (dermis), peripheral and central portions. Lontar stem in green condition showed moisture content 43.10% and its air-dry specific gravity was 0.90. Hard portion of lontar stem revealed its dimensional shrinkage lower than that of wood with comparable specific gravity. Lontar stem showed similar shrinkages in radial and tangential direction. Classified on the basis of Indonesia's wood strength, lontar stem belonged to class II - III. This lontar stem, particularly the hard portion, can be used for building of rural-community houses, ship components, furniture, and handcraft.

Keywords: Lontar, stem, anatomy, physical and mechanical properties, use.

ABSTRAK

Penelitian ini dilakukan untuk mengamati/menguji ciri anatomi, sifat fisik dan mekanis, dan kegunaan batang lontar (Borassus flabellifer Linn.) yang sudah tua dan tidak disadap lagi niranya, yang berasal dari Kabupaten Jeneponto dan Bone, Propinsi Sulawesi Selatan.

Batang lontar terdiri dari 3 bagian yaitu kulit, perifer dan sentral. Batang lontar segar mengandung air 43.10%, dan berat jenis kering udara 0.90. Bagian batang lontar yang keras memiliki penyusutan yang lebih rendah dari penyusutan beberapa jenis kayu yang mempunyai berat jenis yang sama dengan lontar. Batang lontar menunjukkan penyusutan yang sama pada arah radial dan tangensial. Bila diklasifikasikan berdasarkan kelas kekuatan kayu Indonesia, kekuatan batang lontar tergolong kelas II - III. Bagian batang lontar yang keras digunakan untuk bahan bangunan rumah rakyat, komponen perahu, mebel dan kerajinan.

Kata Kunci: Lontar, batang, anatomi, sifat fisik dan mekanis, kegunaan.
I. PENDAHULUAN

II. METODE PENELITIAN

A. Bahan

Batang lontar (Borassus flabellifer Linn.) yang diuji diambil dari Kabupaten Jeneponto dan Bone Propinsi Sulawesi Selatan dengan ketinggian tempat tumbuh masing-masing 25 m dan 105 m dari muka laut. Batang lontar sebagai contoh uji berasal dari pohon yang sudah tua yang tidak disadap lagi niranya. Menurut masyarakat di daerah asal pohon lontar tersebut, contoh pohon yang diambil sudah berumur sekitar 30 sampai 32 tahun. Batang dari pohon-pohon contoh tersebut sudah bersih dari pelepah daun yang mengering dan lapuk, yang menandakan bahwa pohon-pohon tersebut sudah tua.

B. Pembuatan Contoh dan Cara Pengujian

Dari setiap batang diambil tiga lempengan setebal 5 cm untuk bahan pengamatan struktur anatomi, sedangkan bagian batang diatasi dengan panjang 1,5 m digergaji menjadi balok ukuran 6 x 6 x 150 cm untuk bahan pengujian sifat fisik dan mekanis. Lemenggan dan balok lontar tersebut diambil pada ketinggian 0,5 m (pangkal); 3,5 m (tengah) dan 6,5 m
(ujung) dari permukaan tanah. Pengambilan contoh uji pada setiap bagian batang untuk masing-masing sifat yang diuji seperti ditunjukkan pada Gambar 1.

Oleh karena sebagian besar dari bagian sentral batang lontar sifatnya lunak, maka bagian batang yang digunakan sebagai contoh uji untuk pengujian sifat fisik dan mekanis diambil dari bagian perifer dan bagian sentral dekat perifer yang berwarna hitam dan cukup keras. Bentuk dan ukuran dimensi contoh uji serta cara pengujian sifat fisik dan mekanis lontar dilakukan mengikuti standar industri Jepang (JIS, 2003).

![Gambar 1. Cara pengambilan contoh uji](image)

Keterangan (remarks):

a. Posisi pengambilan contoh uji sifat fisik mekanik (Sample extraction for physical and mechanical properties)
b. Sampel pengamatan anatomi kayu (Sample for anatomical observation)

Gambar 1. Cara pengambilan contoh uji

Figure 1. Sample extraction design

C. Rancangan Penelitian

Untuk pengujian sifat fisik dan mekanis dalam penelitian ini dilaksanakan dengan menggunakan rancangan acak lengkap dengan dua faktor perlakuan dan lima kali ulangan. Faktor pertama adalah asal tempat tumbuh pohon lontar yang digunakan sebagai sampel yang terdiri dari dua lokasi, yaitu Kabupaten Jeneponto dan Bone. Faktor kedua sebagai faktor tersaran adalah posisi dalam batang yang terdiri dari tiga ketinggian dalam batang, yaitu: pangkal, tengah dan ujung batang lontar. Dengan demikian terdapat 6 satuan percobaan dan setiap satuan percobaan diulang lima kali sehingga setiap parameter yang diukur menggunakan sebanyak 2 x 3 x 5 atau 30 buah contoh uji.

D. Analisis Data

Data yang diperoleh dari hasil pengamatan/pengukuran anatomi ditabulasi dan kemudian dianalisis secara deskriptif. Sedangkan data yang diperoleh dari hasil pengujian
sifat fisik dan mekanis ditetapkan dan kemudian dianalisis dengan menggunakan model analisis dua faktor dengan pola tersarang (Sudjana, 1989). Apabila posisi ketinggian dalam batang berpengaruh nyata pada parameter yang diamati, maka nilai rata-rata hasil pengujian pada setiap posisi ketinggian dalam batang dibandingkan dengan menggunakan uji beda nyata jujur (Gasperz, 1989).

III. HASIL DAN PEMBAHASAN

A. Ciri-ciri Fisik Batang Lontar

Gambar 2. Proporsi diameter batang lontar

Fig. 2. Diameter Proportion of lontar stem
Pada penampang lintang batang lontar terdiri dari tiga bagian, yaitu kulit, perifer dan jaringan dalam (sentral). Bagian kulit setebal 1-3 mm berwarna hitam terdapat cekungan bekas pelepas daun. Pada bagian lebih dalam terdapat jaringan perifer yang berwarna hitam dan keras. Ketebalan bagian perifer sekitar 1 cm. Antara bagian kulit dan perifer terdapat kortex dengan ketebalan 1 - 10 mm. Pada bagian paling dalam terdapat jaringan sentral yang berwarna putih dan lunak. Jaringan sentral mengandung pati dan air yang tinggi, sehingga jaringan ini sangat rentan terhadap serangan jamur terutama jamur pewarna (blue stain). Sebaliknya bila kayu lontar sudah kering, bagian jaringan sentral sangat rentan terhadap serangan bubuk kayu kering. Bagian batang lontar yang keras dan dapat dimanfaatkan hanya sekitar 30%.

B. Struktur Anatomi

Pada penampang lintang, berkas pembuluh tampak seperti bintik-bintik yang tersebar diantar jaringan parenkim, berkerumun rapat di bagian perifer dengan frekuensi 70-150 berkas per cm² dan berangsur menjarang ke arah bagian sentral dengan frekuensi 4 - 5 berkas per cm².

Frekuensi jumlah berkas pembuluh yang rendah merupakan alasan mengapa bagian sentral batang lontar bersifat lunak. Terdapat sedikit perbedaan frekuensi pembuluh di antara pohon yang berasal dari daerah Kabupaten Jeneponto dan Bone. Perbedaan frekuensi pembuluh tampak menyetok pada berbagai bagian pada arah memanjang dalam batang. Frekuensi berkas pembuluh pada bagian pangkal batang (70-74 berkas per cm²) lebih jarang dari pada bagian tengah (106-144 berkas per cm²) maupun bagian ujung (99-127 berkas per cm²).
Tabel 1. Nilai rata-rata dimensi serat dan sebaran berkhas pembuluh batang lontar

<table>
<thead>
<tr>
<th>Dimensi serat dan sebaran berkhas pembuluh (Fiber dimension and distribution of fibrovascular bundles)</th>
<th>Daerah asal tanaman lontar (Original site of lontar plant)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pangkal (Bottom)</td>
</tr>
<tr>
<td>A. Serat (Fibers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panjang (length)</td>
<td>µm</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeneponto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata (Average)</td>
</tr>
<tr>
<td>Diameter (diameter)</td>
<td>µm</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeneponto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata (Average)</td>
</tr>
<tr>
<td>Diameter lumen (Lumen diameter)</td>
<td>µm</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeneponto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata (Average)</td>
</tr>
<tr>
<td>Tebal dinding (Wall thickness)</td>
<td>µm</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeneponto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata (Average)</td>
</tr>
<tr>
<td>B. Berkas Pembuluh (Fibrovascular bundles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah per cm² (Number per cm²)</td>
<td>-</td>
<td>Bone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeneponto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata (Average)</td>
</tr>
</tbody>
</table>

C. Sifat Fisis

Batang lontar segar (basah) mengandung kadar air 43,10% dan kadar airnya pada keadaan kering udara 15,12%. Berat jenis nominal basah 0,76, berat jenis kering udara 0,90 dan kerapatan 0,82 gr/cm³. Ini menunjukkan bahwa lontar memiliki berat jenis yang lebih tinggi bila dibandingkan dengan aren yang memiliki berat jenis kering udara 0,774 (Karnasudirja and Sarwono, 1989). Bila kita menggolongkan nilai berat jenis kering udara lontar berdasarkan klasifikasi kayu menurut Dumanauw (1982), maka lontar tergolong kayu berat (Berat jenis 0,70 - 0,90).

Lontar tergolong kayu berat dengan penyusutan dari keadaan basah ke kering udara 0,84% (radial) dan 0,86% (tangensial). Penyusutan dari basah ke kering tanur 3,34% (radial) dan 3,54% (tangensial). Bila dibandingkan dengan penyusutan jenis-jenis kayu dari pohon daun lebar yang mempunyai berat jenis yang sama dengan lontar, maka penyusutan lontar tergolong rendah. Di samping itu penyusutan batang lontar pada arah radial dan arah tangensial relatif sama. Perbandingan penyusutan tangensial dan radial (T/R) lontar sebesar 1,06 menunjukkan bahwa lontar memiliki kestabilan dimensi yang tinggi. Phansis dan de Zeeuw (1980) mengemukakan bahwa nilai T/R yang makin mendekati 1,00 berarti stabil. Keuntungan dari kayu yang memiliki penyusutan dengan nilai T/R mendekati 1,00 adalah resiko cacat rendah akibat retak atau pecah.

Rekapitulasi sidik ragam sifat fisis lontar disajikan pada Lampiran 1. Hasil analisis sidik ragam menunjukkan bahwa daerah asal lontar berpengaruh tidak nyata terhadap sifat fisis, sebaliknya bagian dalam batang berpengaruh nyata terhadap hampir semua sifat fisis lontar.
yang diuji, kecuali pada kadar air kering udara.
Pada Tabel 3 hasil uji BNJ pada taraf nyata 5 \% menunjukkan bahwa nilai sifat fisis lontar pada bagian pangkal batang semuanya berbeda tidak nyata dengan bagian tengah, tetapi berbeda nyata dengan bagian ujung. Begitu juga nilai sifat fisis pada bagian tengah pada umumnya berbeda nyata dengan bagian ujung batang, kecuali pada nilai penyusutan dari keadaan basah ke kering udara pada arah radial dan tangensial.

Tabel 2. Nilai rata-rata sifat fisis batang lontar

Table 2. Mean value of physical properties of lontar stem

<table>
<thead>
<tr>
<th>Sifat fisis (Physical properties)</th>
<th>Satuan (Unit)</th>
<th>Daerah asal tanaman lontar (Original site of lontar plant)</th>
<th>Ketergian dalam batang (Height position in the stem)</th>
<th>Rata-rata keseluruhan (Overall mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pangkal (Bottom)</td>
<td>Tengah (Middle)</td>
<td>Ujung (Top)</td>
</tr>
<tr>
<td>Kadar air basah (Green moisture content)</td>
<td>%</td>
<td>Bone 38,22 Jeneponto 37,71</td>
<td>Bone 36,90 Jeneponto 34,33</td>
<td>Bone 47,65 Jeneponto 63,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 39,97 Jeneponto 35,62</td>
<td>Rat-rata keseluruhan (Overall mean)骨 35,62 Jeneponto 55,70</td>
<td>Rat-rata keseluruhan (Overall mean)骨 55,70 Jeneponto 43,10</td>
</tr>
<tr>
<td>Kadar air kering udara (Air dry moisture content)</td>
<td>%</td>
<td>Bone 15,28 Jeneponto 15,43</td>
<td>Bone 15,34 Jeneponto 15,25</td>
<td>Bone 14,82 Jeneponto 14,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 15,36 Jeneponto 15,30</td>
<td>Rat-rata keseluruhan (Overall mean)骨 15,30 Jeneponto 14,71</td>
<td>Rat-rata keseluruhan (Overall mean)骨 14,71 Jeneponto 15,12</td>
</tr>
<tr>
<td>Berat jenis nominal basah (Nominal green specific gravity)</td>
<td>-</td>
<td>Bone 0,82 Jeneponto 0,83</td>
<td>Bone 0,80 Jeneponto 0,78</td>
<td>Bone 0,70 Jeneponto 0,62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,83 Jeneponto 0,79</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,79 Jeneponto 0,66</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,79 Jeneponto 0,76</td>
</tr>
<tr>
<td>Berat jenis kering udara (Air dry specific gravity)</td>
<td>-</td>
<td>Bone 0,94 Jeneponto 0,99</td>
<td>Bone 0,95 Jeneponto 0,93</td>
<td>Bone 0,83 Jeneponto 0,74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,96 Jeneponto 0,94</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,94 Jeneponto 0,79</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,79 Jeneponto 0,90</td>
</tr>
<tr>
<td>Kerapatan (Density)</td>
<td>gr/cm³</td>
<td>Bone 0,87 Jeneponto 0,92</td>
<td>Bone 0,87 Jeneponto 0,85</td>
<td>Bone 0,76 Jeneponto 0,68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,89 Jeneponto 0,86</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,86 Jeneponto 0,72</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,72 Jeneponto 0,82</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering udara pada arah radial (Shrinkage from green to air dry in the radial direction)</td>
<td>%</td>
<td>Bone 0,67 Jeneponto 0,61</td>
<td>Bone 0,63 Jeneponto 0,61</td>
<td>Bone 1,21 Jeneponto 1,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,64 Jeneponto 0,62</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,62 Jeneponto 1,26</td>
<td>Rat-rata keseluruhan (Overall mean)骨 1,26 Jeneponto 0,84</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering udara pada arah tangensial (Shrinkage from green to air dry in the tangential direction)</td>
<td>%</td>
<td>Bone 0,56 Jeneponto 0,62</td>
<td>Bone 0,60 Jeneponto 0,69</td>
<td>Bone 1,39 Jeneponto 1,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,59 Jeneponto 0,65</td>
<td>Rat-rata keseluruhan (Overall mean)骨 0,65 Jeneponto 1,33</td>
<td>Rat-rata keseluruhan (Overall mean)骨 1,33 Jeneponto 0,86</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering tanur pada arah radial (Shrinkage from green to oven dry in the radial direction)</td>
<td>%</td>
<td>Bone 2,64 Jeneponto 2,66</td>
<td>Bone 2,96 Jeneponto 3,77</td>
<td>Bone 3,87 Jeneponto 4,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 2,65 Jeneponto 3,37</td>
<td>Rat-rata keseluruhan (Overall mean)骨 3,37 Jeneponto 3,99</td>
<td>Rat-rata keseluruhan (Overall mean)骨 3,99 Jeneponto 3,34</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering tanur pada arah tangensial (Shrinkage from green to oven dry in the tangential direction)</td>
<td>%</td>
<td>Bone 2,90 Jeneponto 3,03</td>
<td>Bone 3,00 Jeneponto 4,06</td>
<td>Bone 4,09 Jeneponto 4,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rat-rata keseluruhan (Overall mean)骨 2,97 Jeneponto 3,53</td>
<td>Rat-rata keseluruhan (Overall mean)骨 3,53 Jeneponto 4,11</td>
<td>Rat-rata keseluruhan (Overall mean)骨 4,11 Jeneponto 3,54</td>
</tr>
</tbody>
</table>
Tabel 3. Hasil uji BNJ (beda nyata jujur) sifat fisik lontar pada berbagai ketinggian dalam batang.

Table 3. HSD (honesty significant difference) test results on physical properties of lontar at various heights in the stem.

<table>
<thead>
<tr>
<th>Sifat fisik (Physical properties)</th>
<th>Satuan (Unit)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pangkal (Bottom)</td>
</tr>
<tr>
<td>Berat jenis nominal basah (Nominal green specific gravity)</td>
<td>-</td>
<td>0,83</td>
</tr>
<tr>
<td>Berat jenis kering udara (Air dry specific gravity)</td>
<td>-</td>
<td>0,96</td>
</tr>
<tr>
<td>Kerapatan (Density)</td>
<td>gtr/cm³</td>
<td>0,89</td>
</tr>
<tr>
<td>Kadar air basah (Green moisture content)</td>
<td>%</td>
<td>55,70</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering udara pada arah radial (Shrinkage from green to air dry in the radial direction)</td>
<td>%</td>
<td>1,26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sifat fisik (Physical properties)</th>
<th>Satuan (Unit)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ujung (Top)</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering udara pada arah tangensial (Shrinkage from green to air dry in the tangential direction)</td>
<td>%</td>
<td>1,33</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering tanur pada arah radial (Shrinkage from green to oven dry in the radial direction)</td>
<td>%</td>
<td>3,99</td>
</tr>
<tr>
<td>Penyusutan dari keadaan basah ke kering tanur pada arah tangensial (Shrinkage from green to oven dry in the tangential direction)</td>
<td>%</td>
<td>4,11</td>
</tr>
</tbody>
</table>

Keterangan: Nilai-nilai pada baris yang diberi garis bawah berbeda tidak nyata. (Remark): (Values in the same row with underlines are not significantly different)

D. Sifat Mekanis

Pada Tabel 4 tampak bahwa batang lontar mempunyai nilai keteguhan lentur pada batas proporsi 903,06 kg/cm², keteguhan lentur pada batas patah 1.020,10 kg/cm², modulus Young 13.200,92 kg/cm², keteguhan tekan sejajar serat 506,56 kg/cm², keteguhan tekan tegak lurus serat 229,12 kg/cm², keteguhan geser sejajar serat 94,05 kg/cm², dan kekerasan sisi 498,37 kg/cm².

Pada umumnya klasifikasi kekuatan kayu di Indonesia didasarkan pada keteguhan lentur pada batas patah dan keteguhan tekan sejajar serat. Sifat-sifat mekanis lainnya juga penting diketahui dalam hubungannya dengan pengolahan dan pemanfaatan kayu untuk keperluan tertentu. Bila dibandingkan dengan pohon aren yang memiliki keteguhan lentur statik pada batas patah 1176,45 kg/cm² dan keteguhan tekan sejajar serat 351,67 kg/cm² (Karnasudirja and Sarwono, 1989), maka lontar memiliki keteguhan lentur pada batas patah yang lebih rendah dari pada aren, tetapi sebaliknya keteguhan tekan sejajar serat lontar lebih tinggi.
Tabel 4. Nilai rata-rata sifat mekanis batang lontar

Table 4. Mean value of mechanical properties of lontar stem

<table>
<thead>
<tr>
<th>Sifat mekanis (Mechanical properties)</th>
<th>Satuan (Unit)</th>
<th>Daerah asal tanaman lontar (Original site of lontar plant)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
<th>Rata-rata keseluruhan (Overall mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pangkal (Bottom)</td>
<td>Tengah (Middle)</td>
<td>Ujung (Top)</td>
</tr>
<tr>
<td>Keteguhan lentur pada batas proporsi (Bending strength at proportional limit)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>1.097,87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>1.040,52</td>
</tr>
<tr>
<td>Keteguhan lentur pada batas patah (Bending strength at failure)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>1.196,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>1.104,61</td>
</tr>
<tr>
<td>Modulus Young (Young's modulus)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>12.800,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>15.697,69</td>
</tr>
<tr>
<td>Keteguhan tekan sejarai serat (Compression strength parallel to the grain)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>583,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>577,97</td>
</tr>
<tr>
<td>Keteguhan tekan tegak lurus serat (Compression strength perpendicular to the grain)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>254,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>255,02</td>
</tr>
<tr>
<td>Keteguhan geser sejarai serat (Shear strength parallel to the grain)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>128,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>94,20</td>
</tr>
<tr>
<td>Kekerasan sisi (Side hardness)</td>
<td>(kg/cm²)</td>
<td>Bone</td>
<td>Jeneponto</td>
<td>562,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone</td>
<td>Jeneponto</td>
<td>532,60</td>
</tr>
</tbody>
</table>

Hasil analisis keragaman (Lampiran 2) menunjukkan bahwa daerah asal lontar berpengaruh tidak nyata pada semua sifat mekanis yang diuji, sebaliknya bagian dalam batang berpengaruh sangat nyata terhadap semua nilai sifat mekanis yang diuji. Hasil uji BNJ sifat mekanis lontar pada berbagai bagian dalam batang disajikan dalam Tabel 5.

Untuk mengetahui apakah terdapat perbedaan kelas kuat lontar pada beberapa posisi ketinggian dalam batang, maka dilakukan perhitungan dengan menggunakan nilai berat jenis kering udara, keteguhan lentur pada batas patah dan keteguhan tekan sejarai serat seperti pada Tabel 6. Pada umumnya klasifikasi kekuatan kayu di Indonesia didasarkan pada berat jenis, keteguhan lentur pada batas patah dan keteguhan tekan sejarai serat. Pada Tabel 6 di atas dapat diketahui bahwa kekuatan lontar pada bagian pangkal dan tengah batang tergolong kelas kuat II, sedangkan pada bagian ujung batang tergolong kelas kuat III. Secara umum dapat disebutkan bahwa lontar tergolong kayu kelas kuat II-III.

Pada umumnya klasifikasi kekuatan kayu di Indonesia didasarkan pada berat jenis, keteguhan lentur pada batas patah dan keteguhan tekan sejarai serat. Pada Tabel 6 di atas dapat diketahui bahwa kekuatan lontar pada bagian pangkal dan tengah batang tergolong kelas kuat II, sedangkan pada bagian ujung batang tergolong kelas kuat III. Secara umum dapat disebutkan bahwa lontar tergolong kayu kelas kuat II-III.
Table 5. HSD (honestly significant difference) test results on mechanical properties of lontar at various height in the stem

<table>
<thead>
<tr>
<th>Sifat mekanis (Mechanical properties)</th>
<th>Satuan (Unit)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pangkal (Bottom)</td>
</tr>
<tr>
<td>Keteguhan lentur pada batas proporsi (Bending strength at proportional limit)</td>
<td>kg/cm²</td>
<td>1.040,52</td>
</tr>
<tr>
<td>Keteguhan lentur pada batas patah (Bending strength at failure)</td>
<td>kg/cm²</td>
<td>1.145,48</td>
</tr>
<tr>
<td>Modulus Youngs (Young's modulus)</td>
<td>kg/cm²</td>
<td>14.249,12</td>
</tr>
<tr>
<td>Keteguhan tekan sejajar serat (Compression strength parallel to the grain)</td>
<td>kg/cm²</td>
<td>580,76</td>
</tr>
<tr>
<td>Keteguhan tekan tegak lurus serat (Compression strength perpendicular to the grain)</td>
<td>kg/cm²</td>
<td>254,92</td>
</tr>
<tr>
<td>Keteguhan geser sejajar serat (Shear strength parallel to the grain)</td>
<td>kg/cm²</td>
<td>111,13</td>
</tr>
<tr>
<td>Kekerasan sisi (Side hardness)</td>
<td>kg/cm²</td>
<td>547,40</td>
</tr>
</tbody>
</table>

Table 6. Klasifikasi kekuatan batang lontar pada berbagai ketinggian dalam batang pohon.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat batang lontar (Lontar stem properties)</th>
<th>Satuan (Unit)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
<th>Rata-rata (Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pangkal (Bottom)</td>
<td>Tengah (Middle)</td>
</tr>
<tr>
<td>1.</td>
<td>Berat jenis kering udara (Air dry specific gravity)</td>
<td>-</td>
<td>0,96</td>
<td>0,94</td>
</tr>
<tr>
<td>2.</td>
<td>Keteguhan lentur pada batas patah (Bending strength at failure)</td>
<td>kg/cm²</td>
<td>1.145,48</td>
<td>1.021,26</td>
</tr>
<tr>
<td>3.</td>
<td>Keteguhan tekan sejajar serat (Compression strength parallel to the grain)</td>
<td>kg/cm²</td>
<td>580,76</td>
<td>556,54</td>
</tr>
<tr>
<td></td>
<td>Klas kuat (Strength class)</td>
<td>-</td>
<td>II</td>
<td>II</td>
</tr>
</tbody>
</table>
E. Kegunaan Batang Lontar

Penebangan dan pengolahan batang lontar oleh masyarakat di kabupaten Jeneponto dan Bone menggunakan pohon yang sudah cukup tua yang tidak menghasilkan nira lagi atau hasil niranya sudah sangat kurang. Pada penggerrajian batang lontar oleh masyarakat, bagian batang sebelah luar (kulit) dan bagian sentral yang berwarna putih dan lunak dibuang, sedangkan yang digunakan hanya bagian batang yang keras dan berwarna hitam. Masyarakat di kabupaten Jeneponto dan Bone umumnya menggunakan lontar untuk bahan bangunan rumah rakyat, antara lain : kaso, reng, balok lantai, rangka dinding dan tangga. Beberapa komponen perahu juga dibuat dengan menggunakan kayu lontar, antara lain senta dan balok lantai geladak. Selain itu, kayu lontar juga digunakan untuk bahan kerajinan berupa peralatan rumah tangga, antara lain sendok dan spatula.

V. KESIMPULAN

1. Batang lontar pada umumnya bengkok (melengkung) dan sangat sedikit yang berbatang lurus. Pohon lontar yang tua mempunyai batang bebas pelepah dengan panjang 8 m sampai 12 m dan diameter pangkal 47 sampai 50 cm. Batang lontar tidak ada yang selindris. Perbandingan antara diameter pangkal, tengah dan ujung batang lontar adalah sekitar 4 : 2 : 3.

2. Batang lontar terdiri atas 3 bagian yaitu kulit, perifer dan sentral. Kulit berwarna hitam dengan ketebalan 1-3 mm, terdapat cekungan bekas pelepah daun. Bagian perifer tersusun atas berkas pembuluh yang rapat dan semakin jarang ke arah sentral. Ketebalan bagian perifer sekitar 1 cm.

3. Lontar segar mengandung kadar air 43,10%, sedangkan lontar yang telah kering udara mengandung kadar air 15,12%. Berat jenis nominal basah 0,76, berat jenis kering udara 0,90 dan kerapatan 0,82 gr/cm³

5. Lontar memiliki keteguhan lentur pada batas patah 1.020,10 kg/cm², keteguhan tekan sejajar serat 506,56 kg/cm², keteguhan tekan tegak lurus serat 229,12 kg/cm², keteguhan geser sejajar serat 94,05 kg/cm² dan kekerasan sisi 498,37 kg/cm².

6. Bila diklasifikasikan berdasarkan klasifikasi kekuatan kayu Indonesia, lontar tergolong kelas kuat II-III.

7. Masyarakat di kabupaten Jenepongo dan Bone menggunakan lontar hanya pada bagian batang yang keras dan berwarna hitam, sedangkan bagian kulit dan sentral bagian sentral yang berwarna putih dan lunak hanya dijadikan kayu bakar atau dibuang. Bagian batang lontar yang dapat dimanfaatkan hanya sekitar 30% dari volume batang.

8. Lontar dapat digunakan sebagai bahan bangunan untuk perumahan rakyat, komponen perahu, mebel, kerajinan dan saluran air.

DAFTAR PUSTAKA

Lampiran 1. Rekapitulasi sidik ragam sifat fisis kayu lontar

Appendix 1. Recapitulation regarding analysis of variance on physical properties of lontar stem

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat fisis (Physical properties)</th>
<th>Daerah asal tanaman lontar (Original site of lontar plan)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kwadrat tengah (Mean square)</td>
<td>F. hit. (F. Calc.)</td>
</tr>
<tr>
<td>1.</td>
<td>Kadar air basah</td>
<td>141,1802</td>
<td>0,19 **</td>
</tr>
<tr>
<td></td>
<td>(Green moisture content)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Kadar air kering udara</td>
<td>0,0183</td>
<td>0,03 **</td>
</tr>
<tr>
<td></td>
<td>(Air dry moisture content)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Berat jenis nominal basah</td>
<td>0,0065</td>
<td>0,16 **</td>
</tr>
<tr>
<td></td>
<td>(Nominal green specific gravity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Berat jenis kering udara</td>
<td>0,0024</td>
<td>0,05 **</td>
</tr>
<tr>
<td></td>
<td>(Air dry specific gravity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Kerapatan</td>
<td>0,0036</td>
<td>0,08 **</td>
</tr>
<tr>
<td></td>
<td>(Density)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Penyusutan dari keadaan basah ke kering udara pada arah radial</td>
<td>0,0241</td>
<td>0,04 **</td>
</tr>
<tr>
<td></td>
<td>(Shrinkage from green to air dry on the radial direction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Penyusutan dari keadaan basah ke kering udara pada arah tangensial</td>
<td>0,0003</td>
<td>0,0004 **</td>
</tr>
<tr>
<td></td>
<td>(Shrinkage from green to air dry on the tangensial direction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Penyusutan dari keadaan basah ke kering tanur pada arah radial</td>
<td>0,9505</td>
<td>0,39 **</td>
</tr>
<tr>
<td></td>
<td>(Shrinkage from green to oven dry on the radial direction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Penyusutan dari keadaan basah ke kering tanur pada arah tangensial</td>
<td>1,2979</td>
<td>0,64 **</td>
</tr>
<tr>
<td></td>
<td>(Shrinkage from green to oven dry on the tangensial direction)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan (Remarks):
- * = nyata pada taraf 5% (significant at 5% level)
- ** = nyata pada taraf 1% (significant at 1% level)
- = tidak nyata (Not significant)
Lampiran 2. Rekapitulasi sidik ragam sifat mekanis kayu lontar

Appendix 2. Recapitulation regarding analysis of variance on mechanical properties of lontar stem

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat mekanis (Mechanical properties)</th>
<th>Daerah asal tanaman lontar (Original site of lontar plant)</th>
<th>Ketinggian dalam batang (Height position in the stem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kuadrat tengah (Mean square) F. hit. (F. Calc.)</td>
<td>Kuadrat tengah (Mean square) F. hit. (F. Calc.)</td>
</tr>
<tr>
<td>1.</td>
<td>Keteguhan lentur pada batas proporsi</td>
<td>25.487,0112 0,19 **</td>
<td>137.400,9604 15,06 **</td>
</tr>
<tr>
<td>2.</td>
<td>(Bending strength at proportional limit) Keteguhan lentur pada batas patah</td>
<td>107.522,9280 1,35 **</td>
<td>79.648,0904 8,16 **</td>
</tr>
<tr>
<td>3.</td>
<td>(Bending strength at failure)</td>
<td>47.719,494,70 2,82 **</td>
<td>16.907,654,09 7,00 **</td>
</tr>
<tr>
<td>4.</td>
<td>Modulus Young (Young's modulus)</td>
<td>2,8213 4,16 **</td>
<td>67.741,2301 8,39 **</td>
</tr>
<tr>
<td></td>
<td>Keteguhan tekan sejajar serat (Compression strength parallel to the grain)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Keteguhan tekan tegak lurus serat (Compression strength perpendicular to the grain)</td>
<td>38,1914 0,01 **</td>
<td>7.457,3819 10,92 **</td>
</tr>
<tr>
<td>6.</td>
<td>Keteguhan geser sejajar serat (Shear strength parallel to the grain)</td>
<td>2,099,1968 1,61 **</td>
<td>1.300,9421 4,21 *</td>
</tr>
<tr>
<td>7.</td>
<td>Kekerasan sisi (Side hardness)</td>
<td>20.228,0333 1,05 **</td>
<td>19.356,0333 9,58 **</td>
</tr>
</tbody>
</table>

Keterangan (Remarks): ** = nyata pada taraf 5% (significant at 5% level)
* = nyata pada taraf 1% (significant at 1% level)
= tidak nyata (Not significant)