The effect of organic media on the quality of Santalum album seedling

Asri Insiana Putri
Balai Besar Penelitian Bioteknologi dan Pemuliaan Tanaman Hutan Yogyakarta

ABSTRACT

The quality of Santalum album seedling is influenced by growing media where their root grow and develop. This research was conducted to confirm that organic growing media is as good characteristics as top soil media and to determine the quality index value as indicator of seedling quality. Three types of media: top soil, composted sawdust and pure sawdust were arranged in a completely randomized design with 4 replicates of 5 seeds. The observation period was 8 months, from January until September 2007. The result showed that index value for S. album seedling in organic media is as relatively high as in top soil media; 1.42 for top soil, 1.10 for composted sawdust and 1.08 for pure sawdust.

Key Words: Organic media, Santalum album, seedling quality, topsoil

ABSTRAK

Mutu bibit Santalum album dipengaruhi oleh media pertumbuhan, tempat akar tanaman tumbuh dan berkembang. Penelitian ini bertujuan untuk mengamati pengaruh media pertumbuhan organik dibandingkan media tanah atasan terhadap nilai indeks mutu sebagai indikator mutu bibit pada cendana. Metode yang digunakan adalah rancangan acak lengkap dengan 3 macam media: tanah atasan regosol, kompos serbuk gergajian kayu sengon dan serbuk gergajian kayu sengon murni, setiap perlakuan dengan 4 ulangan masing-masing 5 bibit. Parameter yang diamati adalah tinggi tanaman, diameter batang, berat kering tajuk, berat kering akar dan berat kering total. Penelitian dilakukan selama 8 bulan, mulai bulan Januari hingga September 2007. Hasil penelitian menunjukkan bahwa bibit S. album yang ditumbuhkan pada media organik mempunyai nilai indeks mutu yang nisbi sama dengan media tanah atasan; 1.42 untuk media tanah atasan, 1.10 untuk media kompos gergajian dan 1.08 untuk media gergajian murni.

Kata Kunci: Media organik, mutu bibit, Santalum album, tanah atasan
I. PENDAHULUAN

Sampai saat ini penggunaan tanah atasas masih menjadi alternatif utama sebagai media bibit tanaman hutan. Tanah atasan (top soil) adalah lapisan tanah paling atas dengan solum berkisar 15 cm, yang biasanya subur dan banyak mengandung bahan organik. Kesuburan lapisan tanah ini sulit tergantikan atau memerlukan waktu yang lama serta lama walaupun pada lahan yang tidak terusik (Alexander, 1976). Program pembangunan hutan tanaman 5 juta ha di Indonesia sampai dengan tahun 2009 memerlukan minimal sekitar 1 milyar bibit. Bila untuk memenuhi kebutuhan bibit tersebut digunakan sekitar 50% tanah atasan, maka tanah atasan akan tergerus sekitar 5 juta m³. Dengan demikian penggunaan tanah atasan sebagai media pertumbuhan bibit selayaknya sangat dibatasi, agar dampak negatif akibat pengambilan tanah atasan secara besar-besaran untuk keperluan tersebut dapat dihindarkan (ITTO, 2006).

Oleh karena itu maka penelitian ini perlu dilakukan dengan tujuan untuk mengetahui pengaruh media organik dibandingkan media atasan terhadap pertumbuhan dan nilai indeks mutu bibit cendana, agar penggunaan tanah atasan sebagai media tanam bibit dapat dibatasi dan tetap diperoleh bibit cendana dengan mutu tinggi.

II. BAHAN DAN METODE

A. Bahan

Benih campuran Santalum album berasal dari Nusa Tenggara Timur. Bahan untuk media pertumbuhan bibit berupa limbah media jamur yang berasal dari serbuk gergajian kayu sengon. Gergajian sengon ini sudah didecomposisi oleh jamur (brown root fungi) selama sekitar 9 bulan, dan telah melalui proses pengomposan dengan penambahan mikroba pendegradasi dan kalsium. Limbah tersebut tersedia melimpah di banyak tempat usaha budidaya jamur konsumsi (edible mushroom) yang memanfaatkan serbuk gergajian sengon sebagai media. Medias lain yang dipergunakan dalam penelitian ini adalah serbuk gergajian sengon murni tanpa melalui proses pengomposan dan tanah atasan regosol dari Kaliurang, Yogyakarta. Wadah media untuk bibit berupa kantong plastik hitam yang pada bagian samping dan bawah diberi lubang drainase, bervolume sekitar 300 cm³.

B. Metode

Benih cendana setelah direndam satu malam kemudian dicuci dan ditanam di media pasir steril. Media tersebut diletakkan pada wadah kotak plastik, setelah benih disebarkan kemudian disungkup dengan plastik, setiap kotak plastik berisi sekitar 300 benih. Setelah benih tumbuh 4 daun (sekitar 3 minggu), dipindah ke kantong plastik hitam dengan perlakuan: S1 (serbuk gergajian kayu sengon limbah media jamur), S2 (serbuk gergajian kayu sengon murni), S3 (tanah
atasan regosol dengan kompos). Masing-masing kantung media ditanam 1 (satu) bibit cendana dengan tanaman inang krokok (Crotalaria junquceae).

Bibit ditumbuhkan dalam rumah kaca sampai umur 3 bulan, setelah itu diletakkan di ruang terbuka sampai siap ditanam di lapangan sekitar umur 8 bulan. Pemupukan media dengan pupuk NPK (12-9-6) dan hormon pertumbuhan auksin masing-masing sebanyak 1 ml/liter, dilakukan 1 minggu sekali.

\[
\text{Indeks} = \frac{\text{Tinggi (cm)}}{\text{Diameter (cm)}} + \frac{\text{Berat kering bagian tajuk (g)}}{\text{Berat kering bagian akar (g)}}
\]

III. HASIL DAN PEMBAHASAN

A. Hasil

Pada Tabel 1 dapat ditunjukkan nilai rerata dari berat kering tajuk, berat kering akar, berat kering total, diameter batang, tinggi tanaman dan hasil perhitungan indeks mutu bibit dengan media tanah atasan, media kompos serbuk gergaji dan media serbuk gergaji murini.

Hasil analisis perbandingan LSD (Least Significant Difference) untuk mengetahui beda rata-rata dan signifikansi pada tinggi tanaman, diameter batang berat kering total dan indeks mutu bibit ditunjukkan pada Tabel 2. Setiap parameter yang diamati pada masing-masing perlakuan berbeda nyata bila nilai signifikansi lebih kecil dari 0,05.
Tabel 1. Rerata nilai berat kering tajuk, berat kering akar, berat kering total, diameter, tinggi dan indeks mutu bibit cendana umur 8 bulan.

<table>
<thead>
<tr>
<th>Media tanam</th>
<th>Nilai</th>
<th>Berat kering tajuk (gr)</th>
<th>Berat kering akar (gr)</th>
<th>Berat kering total (gr)</th>
<th>Diameter batang (cm)</th>
<th>Tinggi tanaman (cm)</th>
<th>Indeks mutu bibit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanah atsari</td>
<td>Rerata</td>
<td>4.5820</td>
<td>4.5440</td>
<td>9.1260</td>
<td>1.7975</td>
<td>15.1250</td>
<td>1.4209</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.04396</td>
<td>0.02798</td>
<td>0.06261</td>
<td>0.40846</td>
<td>3.36732</td>
<td>1.81499</td>
</tr>
<tr>
<td>Kompos limbah gergajian</td>
<td>Rerata</td>
<td>5.2100</td>
<td>4.8890</td>
<td>10.0990</td>
<td>2.3455</td>
<td>19.2500</td>
<td>1.1006</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.85681</td>
<td>0.60772</td>
<td>1.06975</td>
<td>0.57410</td>
<td>6.75024</td>
<td>0.31178</td>
</tr>
<tr>
<td>Gergajian murni</td>
<td>Rerata</td>
<td>4.8050</td>
<td>4.7350</td>
<td>9.5400</td>
<td>1.8890</td>
<td>15.1500</td>
<td>1.0806</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.26793</td>
<td>0.10952</td>
<td>0.37111</td>
<td>0.45116</td>
<td>2.53969</td>
<td>0.24644</td>
</tr>
</tbody>
</table>

Tabel 2. Analisis perbandingan LSD (Least Significant Difference) antara tinggi, diameter, bobot kering dan indeks mutu bibit *S. album* pada umur 8 bulan sejak penanaman benih.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>(I) Media</th>
<th>(J) Media</th>
<th>Beda rata-rata (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinggi tanaman</td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-4.1000(*)</td>
<td>1.45321</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>0.0250</td>
<td>1.45321</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-4.1000(*)</td>
<td>1.45321</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>-4.1250(*)</td>
<td>1.45321</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-0.0250</td>
<td>1.45321</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kompos serbuk gergaji</td>
<td>-4.1250(*)</td>
<td>1.45321</td>
<td>0.006</td>
</tr>
<tr>
<td>Diameter batang</td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-0.4565(*)</td>
<td>0.15275</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>0.0915</td>
<td>0.15275</td>
<td>0.552</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>0.4565(*)</td>
<td>0.15275</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>0.5480(*)</td>
<td>0.15275</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-0.0915</td>
<td>0.15275</td>
<td>0.552</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kompos serbuk gergaji</td>
<td>-0.5480(*)</td>
<td>0.15275</td>
<td>0.001</td>
</tr>
<tr>
<td>Bobot kering</td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-0.4140</td>
<td>0.20704</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>-0.9730(*)</td>
<td>0.20704</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>0.4140</td>
<td>0.20704</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>-0.5950(*)</td>
<td>0.20704</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>0.9730(*)</td>
<td>0.20704</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kompos serbuk gergaji</td>
<td>0.5590(*)</td>
<td>0.20704</td>
<td>0.009</td>
</tr>
<tr>
<td>Indeks mutu</td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>-0.0645</td>
<td>0.08197</td>
<td>0.435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>-0.0840</td>
<td>0.08197</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>0.0645</td>
<td>0.08197</td>
<td>0.435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serbuk gergaji murni</td>
<td>-0.0195</td>
<td>0.08197</td>
<td>0.813</td>
</tr>
<tr>
<td></td>
<td>Tanah atsari</td>
<td>Kompos serbuk gergaji</td>
<td>0.0840</td>
<td>0.08197</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kompos serbuk gergaji</td>
<td>0.0195</td>
<td>0.08197</td>
<td>0.813</td>
</tr>
</tbody>
</table>
Beberapa sifat kimia media tanah atasan regosol, media kompos serbuk gergajian dan media gergajian murni dapat ditunjukkan pada Tabel 3.

Tabel 3. Beberapa sifat kimia media tanah atasan regosol, media kompos gergajian dan media gergajian murni

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat kimia</th>
<th>Media tanah atasan regosol</th>
<th>Media kompos gergajian</th>
<th>Media gergajian murni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kadar air (%)</td>
<td>14,61</td>
<td>52,12</td>
<td>25,53</td>
</tr>
<tr>
<td>2.</td>
<td>pH H_{2}O</td>
<td>6,82</td>
<td>6,5</td>
<td>6,52</td>
</tr>
<tr>
<td>3.</td>
<td>Carbon (%)</td>
<td>0,30</td>
<td>36,5</td>
<td>3,99</td>
</tr>
<tr>
<td>4.</td>
<td>Bahan Organik (%)</td>
<td>0,50</td>
<td>62,94</td>
<td>8,15</td>
</tr>
<tr>
<td>5.</td>
<td>Nitrogen total (%)</td>
<td>0,02</td>
<td>1,87</td>
<td>0,41</td>
</tr>
<tr>
<td>6.</td>
<td>Phosphat total (me/100 g)</td>
<td>29,69</td>
<td>0,37</td>
<td>0,13</td>
</tr>
<tr>
<td>7.</td>
<td>Kalium total (me/100 g)</td>
<td>0,17</td>
<td>0,51</td>
<td>0,21</td>
</tr>
<tr>
<td>8.</td>
<td>Nisbah C/N</td>
<td>15,00</td>
<td>19,52</td>
<td>9,73</td>
</tr>
</tbody>
</table>

B. Pembahasan

Berdasarkan hasil penelitian yang ditunjukkan pada Tabel 1, diketahui bahwa pertumbuhan tinggi tanaman, diameter batang dan berat kering bibit pada media kompos gergajian kayu sengon limbah jamur lebih baik dibanding media tanah atasan maupun media serbuk gergajian kayu sengon murni. Namun ketiga macam media tidak berpengaruh pada nilai indeks mutu (Tabel 1). Tinggi tanaman, diameter batang maupun bobot kering bibit S. album pada media kompos gergajian mempunyai pertumbuhan terbaik kemudian diikuti media gergajian murni dan tanah atasan. Namun demikian bibit pada ketiga macam media mempunyai nilai indeks mutu yang nisbi sama yaitu antara 1,02 sampai dengan 1,42 sehingga dengan demikian kualitas bibit yang tumbuh di ketiga macam media selama 8 bulan sejak penanaman benih mempunyai kualitas yang tidak berbeda secara nyata. Nilai indeks juga tidak gergajian kayu kelapa, sabut kelapa dan campuran 50% gambut dengan serbuk gergajian kelapa. Namun pada media gambut dan campurannya dengan sabut kelapa, pertumbuhan tinggi dan bobot kering sesuai dengan indeks mutu yaitu dua kali lebih tinggi dibandingkan tanah mineral. Hal ini berarti media organik lebih baik sebagai media pertumbuhan bibit dibandingkan tanah mineral. Dengan demikian penelitian macam media yang mempunyai nilai indeks mutu yang lebih tinggi untuk bibit S. album perlu dilakukan.

Pada analisis perbandingan LSD, parameter tinggi tanaman dan diameter batang, media kompos gergajian berbeda nyata dengan media tanah atasan maupun media gergajian murni. Signifikansi tinggi tanaman antara media tanah atasan dengan media kompos gergajian adalah 0,07 sedangkan signifikansi antara media kompos gergajian dengan media gergajian murni adalah 0,06. Signifikansi diameter batang antara media tanah
atasan dengan media kompos serbuk gergaji adalah 0,04 sedangkan antara media kompos serbuk gergaji dengan media serbuk gergaji murni adalah 0,001. Pada parameter berat kering total tanaman (daun batang dan akar) pada media tanah atas an berbeda nyata dengan media serbuk gergaji murni pada tingkat signifikansi 0,000 sedangkan antara media kompos serbuk gergaji dengan media serbuk gergaji murni berbeda nyata pada tingkat signifikansi 0,009 (Tabel 2).

Pertumbuhan tinggi tanaman maupun diameter batang berbeda nyata antara media kompos serbuk gergaji dengan media tanah atas an, namun tidak berbeda nyata antara tanah atas an dengan serbuk gergaji murni. Demikian juga untuk berat kering tanaman pada ketiga media saling berbeda nyata karena pada kering oven 70°C selama 3 hari, menunjukkan kadar air mutlak yang ada pada tanaman berbeda. Walaupun tinggi tanaman dan diameter tidak berbeda nyata, rongga udara pada jaringan tanaman dapat terisi komponen non-protoplasmik cair yang tidak sama (Dwidjoseputro, 1980), stimulasi humus dari bahan organik merupakan salah satu penyebab perbedaan komponen tersebut (Vaughan & Malcolm, 1984; Vaughan et al., 1984). Hal tersebut dapat dijelaskan berdasarkan perbedaan sifat kimia masing-masing media di Tabel 3.

Sesuai dengan tujuan pada penelitian ini dan dengan hasil yang menunjukkan tidak adanya perbedaan indeks mutu antara media organik dengan media tanah atas an dapat dikatakan bahwa bahan organik dapat dipergunakan sebagai media pembibitan sebaik tanah atas an. Bahan-bahan organik terutama yang bersifat limbah yang ketersediaannya melimpah dan murah dapat dimanfaatkan untuk alternatif media tanah atas an yang sulit/lambat tergantikan. Bobot persatuan bibit 3 hingga 4 kali lebih rendah dibandingkan media tanah, sehingga memper-
IV. KESIMPULAN DAN SARAN

1. Kesimpulan

Bibit cendana yang ditumbuhkan pada media organik kompos serbuk gergajian dan serbuk gergajian murni mempunyai nilai indeks mutu nisbi sama baik dengan media tanah atasan. Nilai indeks mutu masing-masing media adalah 1,10 untuk kompos serbuk gergajian; 1,08 untuk serbuk gergajian murni dan 1,42 untuk tanah atasan. Dengan demikian media organik dapat digunakan sebagai alternatif media tanam bibit pengganti tanah atasan.

2. Saran

a. Penelitian nilai indeks mutu uji lapang bibit cendana perlu dilakukan untuk pengamatan kualitas bibit, persentase jadi dan pertumbuhan tanaman.

b. Penelitian nilai indeks mutu tanaman inang bersama bibit cendana sampai penanaman di lapang perlu dilakukan untuk pengamatan kesesuaian tanaman inang, persentase jadi dan pertumbuhan tanaman.

DAFTAR PUSTAKA

Anonim. 2007. Agro Forestry Tree Database. World Agroforestry Centre, coorporated with ICRAF and PROSEA network.

