Perbandingan Algoritma Dijkstra Dan Algoritma
Ant Colony Dalam Penentuan Jalur Terpendek

Finsa Ferdifiansyah — NIM 0710630014
Jurusan Teknik Elektro Konsentrasi Rekayasa Komputer
Fakultas Teknik
Universitas Brawijaya, JI. M.T. Haryono No. 167, Malang 65145, Indonesia
finsa@ferdifiansyah.com
Dosen Pembimbing : 1. Adharul Muttaqin ST.,MT
2. Ir. Muhammad Aswin, MT

Abstrak — Pencarian jalur terpendek merupakan
pencarian sebuah jalur pada graf berbobot yang
meminimalkan jumlah bobot sisi pembentuk jalur
tersebut. Dengan begitu jalur yang dihasilkan merupakan
jalur yang memiliki bobot atau jarak yang paling sedikit.
Salah satu penerapan pencarian jalur terpendek terdapat
pada aktivitas maskapai penerbangan yang mana
jalur-jalur antar kota yang dilewatinya akan membentuk
suatu graf berarah dan berbobot. Dari graf yang
terbentuk inilah akan diproses menggunakan algoritma
Dijkstra dan Ant Colony untuk menentukan jalur
terpendek dari suatu kota ke kota yang lain.

Pada proses Algoritma, Dijkstra memerlukan data
jarak setiap Kkota terlebih dahulu sebelum memulai proses
algortimanya. Sedangkan pada Algoritma Ant Colony,
tidak memerlukan jarak setiap kota karena pada Ant
Colony jarak antar kota dihitung setelah semut
menyelesaikan perjalanannya. Sehingga Algoritma
Dijkstra hanya bisa berjalan jika terlebih dahulu
diketahui jarak tiap kota, sedangkan pada Algoritma Ant
Colony tidak memerlukan jarak tiap kota wuntuk
menjalankan prosesnya. Dari hasil proses Kkedua
algoritma diketahui jalur yang dihasilkan oleh algoritma
Dijkstra lebih konsisten dan tepat daripada algoritma
Ant Colony yang mana memberikan hasil yang belum
tentu sama dalam setiap prosesnya. Rata-rata memory
yang digunakan pada algoritma Dijkstra sebesar 82,204
KB dan algoritma Ant Colony sebesar 90,404 KB.
Sedangkan dari analisa kompleksitas waktu pada
algoritma Dijkstra diperoleh persamaan f(n) = 0(2n +
13) dan pada Algoritma Ant Colony persamaannya
f(n) = 0(5n + 3).

Kata Kunci— Dijkstra, Ant
terpendek, perbandingan algoritma

Colony, jalur

D alam melakukan perjalanan jarak jauh seperti
misalnya perjalanan antar kota-kota besar di
Indonesia, tentunya tidak bisa diakukan hanya dengan
sekali perjalanan karena terbatasnya transportasi atau
kendala yang lain. Salah satu transportasi yang bisa
melakukan perjalanan jarak jauh, antar pulau dan
memerlukan waktu yang relatif singkat adalah pesawat
terbang. Akan tetapi maskapai penerbangan tidak
sepenuhnya menyediakan jasa perjalanan dari kota asal
ke kota tujuan secara langsung, melainkan mereka
memiliki jalur perjalanannya sendiri yang mana jalur
tersebut menghubungkan antara kota atau bandara
dengan kota terdekat lainnya. Untuk itu, kita harus
mengetahui jalur-jalur antar kota yang akan dilewati

agar bisa memperkitakan jalur mana saja yang akan
dilalui sehingga bisa ditemukan jalur yang terpendek

Dalam ilmu komputer, untuk menentukan jalur
terpendek diperlukan suatu algoritma. Algoritma yang
bisa digunakan untuk menentukan jalur terpendek
adalah algoritma Dijkstra dan Ant Colony. Dari
permasalahan tersebut maka diperlukan suatu
penelitian untuk menganalisa karakteristik maupun
penerapan kedua algoritma tersebut.

A. Skema Algoritma Dijkstra

Pada graf berikut akan menentukan jalur terpendek
dari node 1 ke node 3.

Gambar 1. Graf menentukan jalur terpendek dari
node 1 ke node 3

Ada beberapa jalur yang mungkin misalnya 1 -> 4
-> 3, atau 1 -> 2 -> 3 dan lain-lain, tetapi cara yang
paling efektif adalah :

a. Menentukan node awal dengan memberikan nilai
0 pada node tersebut dan memberikan nilai tak
hingga () pada node yang lainnya

Gambar 2. node awal (1) bernilai 0 dan lainnya
bernilai tak hingga (o)

mailto:finsa@ferdifiansyah.com

b. Menentukan bobot paling kecil untuk melangkah Setelah dibandingkan, ternyata jalur dari node 2

ke node selanjutnya. Pada gambar diketahui memiliki nilai paling minimum. Sehingga bisa
bahwa untuk melangkah ke node 4 memiliki bobot ditentukan jalur terpendek dari node 1 ke node 3 adalah
terkecil, kemudian memberikan nilai atau label 1»4»2»3.

permanen pada node 4 yaitu bernilai 5. B. Pseudocode Dijkstra

1 function Dijkstra(Graph, source):
2 for each vertex v in Graph:
1(0 3 dist[v] := infinity ;
|
ch, 4 previous[v] := undefined ;
5 end for
6
Gambar 3. Menentukan bobot minimum 7 distsource] := 0 ; '
c. Mencari node terpendek berikutnya yaitu yang 8 Q := the set of all nodes in Graph ;
memiliki bobot minimum dengan 9
membandlngkan nilai biaya menuju nod.e. tejrse‘qu 10 while Q is not empty:
atau melalui node yang telah memiliki nilai
11 u := vertex in Q with smallest distance in

permanen.)
dist[] ;
12 remove u from Q ;
!) \ 13 if dist[u] = infinity:
/_\\}/ 14 break;
' 15 end if
16
17 for each neighbor v of u:
18 alt := dist[u] + dist_between(u, v) ;
Gambar 4. Menentukan bobot minimum untuk 19 if alr < dist[v]:
menuju node selanjutnya 20

dist[v] := alt ;

d. Node 2 dan node 5 memiliki nilai yang sama, 21 previous[v] := u ;

maka selanjutnya dilakukan pencarian jalur yang 22 decrease-key v in Q;
paling efektif dari kedua node tersebut 23 end if

"gﬁ“-.] ;H\ 24 end for

{7 p—»(11 25 end while

26 return dist;

T
LS o el WS,

4 5
Gambar 5. Menentukan jalur yang paling efektif
dari node 5

Gambar 6. Menentukan jalur yang paling efektif
dari node 2

C. Diagram Alir Algoritma Dijkstra
/—‘».

()

A 4 1
/ =
/ Inisialisasi
/ titik awal dan % Ber l"::tul
7 » pe
/ Jarta:ntk.\ap titik tersebut
h 4 Y
Beri label Menghapus dari
sementara Untuk daftar label
jarak antar titik sementara

Y Y

Yes aaad
Mencari titik terpendek

Menentukan jarak
minimum dari label
sementara

berikutnya dengan
membandingkan jarak menuju
node tersebut
atau melalui titik yang
telah memiliki label
permanen

:

P g

)

Ne

—v
\/ Selesai)

N— S

Gambar 7. Diagram Alir Dijkstra

II. ALGORITMA ANT COLONY

Algoritma Semut (Ant Colony) diadopsi dari
perilaku koloni semut yang dikenal sebagai sistem
semut (Dorigo, 1996). Secara alamiah koloni semut
mampu menemukan rute terpendek dalam perjalanan
dari sarang ke tempat-tempat sumber makanan. Koloni
semut dapat menemukan rute terpendek antara sarang
dan sumber makanan berdasarkan jejak feromon pada
lintasan yang telah dilalui. Semakin banyak semut yang
melalui suatu lintasan, maka akan banyak jalur yang
dibuat dan memungkinkan semakin besar untuk
menentukan dari jalur terpendek yang dibuat oleh
semut-semut tadi.

A. Skema Algoritma Ant Colony

Secara logika dan matematik semut-semut dari titik
asal yang sama, misalnya sarang, Dbergerak
sendiri-sendiri melewati jalur masing-masing menuju
makanan sebagai titik tujuannya. Setelah mereka
sampai pada titik tujuan, semut-semut ini di data satu
per satu untuk mengetahui jalur yang dilalui beserta
jaraknya. Semut yang menempuh jarak terpendek
adalah pemenangnya dan jalur yang dilaluinya
ditetapkan sebagai jalur terpendek.

Berikut adalah tahapan-tahapan algoritma Semut
dalam graf :

[\
N~

Gambar 8. Perjalanan Semut

a. Pada gambar 2.9.a menunjukkan semut yang
akan melakukan perjalanan mencari tempat
dimana ada makanan, dari X menuju Y.

b. Semut akan melakukan gerakan secara acak
menuju tempat makanan dengan jalur
masing-masing. Seperti pada gambar 2.9.b
semut berjalan dengan jalurnya masing-masing.

c. Setelah berjalan secara acak berdasarkan
jalurnya masing-masing kemudian semut-semut
tersebut akan bertemu lagi dimana tempat
makanan berada seperti pada gambar 2.9.c

d. Pada saat melakukan perjalanan melalui
jalurnya masing-masing, semut meninggalkan
feromon sebagai jejak yang akan diikuti oleh
semut yang lainnya. Semakin banyak semut dan
semakin dekat jarak yang ditempuh maka
feromon juga semakin kuat sehingga semut
yang lainnya akan mengikuti jalur tersebut.

e. Pada optimisasi algoritma semut, proses tadi
akan dilakukan secara berulang sesuai dengan
siklus maksimum yang telah ditentukan.

B. Pseudocode Ant Colony

1 Inisialisasi parameter o, B, Ty, m, Q

2 Inisialisasi titik pertama atau asal semut

3 begin

4 n(a,b) =1/D(a,b)

5 1t(a,b) =1

6

7 //calculate next path, feromon and distance

8 function Probabilistik (from)

9 form=1; m++:m

10 for t = 1; t++ : siklus

11 P, (t) = [Tap ()] [Nap(£)]?
abm Ytevgie[Tan 0] [Man ()18

12 end for

13 end for

14 return dist, path;

15

16 function updateFeromon ()

17 Aty = %

18 nextt= p.14 + Aty

19 return nextt

21 // choice distance & shortpath
22 forx=1;x++

23 if (min (dist(x)))

24 shortpath = path;

25 endif
26 end for
27 end;

C. Diagram Alir Algoritma Ant Colony

[e e

Inisialisasi
Parameter Semut =
(Scatia) |_ Banyak Semut
1 : No
Yes
Menentukan Semut = Semut
banyak semut +1 |
Update
Feromon
Semut = 1
Hitung
—»| Probabilitas Yes
Semut Yes +
Hitung Jarak
Total
Bangkitkan
No Bilangan
Random
Menampilkan
Jarak
Tependek dan
Jumlah Semut

¥

Tampilkan
Jalur
Terpendek

Gambar 9. Diagram Alir Ant Colony

III. PERBANDINGAN JALUR TERPENDEK

Dalam pengujian perbandingan jalur terpendek yang
dihasilkan oleh kedua algoritma, penulis menguji kedua
algoritma dengan data masukkan yang sama dan setiap
masukkan dilakukan pengujian sebanyak sepuluh kali.
Langkah-langkah pengujian untuk setiap algoritma
yaitu dengan cara memasukkan data kota asal dan
tujuan yang sama pada masing-masing algoritma. Pada
algoritma Ant Colony nilai parameter jumlah semut dan
siklus maksimum bernilai 50 dan 25.

Setelah memasukkan data dan melakukan proses
pencarian dengan masing-masing algoritma, maka akan
muncul hasil dari proses tersebut seperti pada gambar
10 dan gambar 11. Kemudian data hasil pengujian
dicatat dan dibandingkan.

Jalur terdekat dari kota Banda Aceh ke kota Jayapura
Berjarak: 5522.216 km

Jumlah kota yang dilalui sebanyak 5 kota

Dengan kota yang dilalui :

Banda Aceh - Pontianak - Samarinda - Manado - Ambon - Jayapura

Gambar 10. Hasil pencarian jalur terpendek

Gambar 11. Jalur yang dihasilkan pada peta

Tabel 1. Hasil pengujian algoritma Dijkstra

Input Output
No
Kota Asal K?ta Jarak [Jumlah Jalur
Tujuan | Total (km)| Kota

1 | Surabaya |Manado| 1735523 [2 Surabaya -
Makasar - Manado

2 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

3 | Surabaya [Manado | 1735523 | 2 Surabaya -
Makasar - Manado

4 | Surabaya |Manado| 1735523 2 Surabaya -
Makasar - Manado

5 | Surabaya |Manado | 1735,523 2 Surabaya -
Makasar - Manado

6 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

7 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

8 | Surabaya |Manado| 1735523 | 2 Surabaya -
Makasar - Manado

9 | Surabaya |Manado | 1735,523) Surabaya -
Makasar - Manado

10 | Surabaya [Manado | 1735523 | 2 Surabaya -
Makasar - Manado

Tabel 2. Hasil pengujian algoritma Ant Colony

Input Output
No . -
Kota Asal K?td Jarak | Jumlah Jalur
Tujuan |Total (km)| Kota

1 | Surabaya |Manado | 1735523 | 2 Surabaya -
Makasar - Manado

2 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

3 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

4 | Surabaya [Manado | 1735,523 2 Surabaya -
Makasar - Manado

5 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

6 | Surabaya |Manado| 1735523 | 2 Surabaya -
Makasar - Manado

7 | Surabaya |Manado | 1735523 | 2 Surabaya -
Makasar - Manado

8 | Surabaya |Manado| 1735523 | 2 Surabaya -
Makasar - Manado

9 | Surabaya |Manado| 1735,523 2 Surabaya -
Makasar - Manado

10| Surabaya |Manado | 1735523 | 2 Surabaya -
Makasar - Manado

Dari contoh pengujian diatas dapat diketahui bahwa
penggunaan Algoritma Dijkstra dan Ant Colony
menghasilkan jalur denan jalur terpendek yang sama.
Pada Algoritma Dijkstra menghasilkan jalur dan jarak
yang sama untuk setiap prosesnya, tetapi pada
Algoritma Ant Colony jarak dan jalur yang dihasilkan
untuk setiap prosesnya tidak selalu sama walaupun
pada algoritma ini juga dapat menemukan jalur dan
jarak terpendek.

Proses dan hasil algortima Ant Colony juga
dipengeruhi oleh jumlah semut (m) dan sikusnya.
Semakin besar jumlah semut dan siklusnya makan hasil
dari algoritma Ant Colony akan semakin maksimal.
Dengan rincian semakin banyak semut yang melakukan
perjalanan, maka semakin besar kemungkinan untuk
menemukan jarak terpendek. Sedangkan siklus
perjalanan mempengaruhi banyaknya jalur yang
ditempuh oleh semut. Dalam hal ini juga akan
mempengaruhi jika dalam graf terdapat banyak simpul
atau semakin banyak kota.

IV. PERBANDINGAN PENGGUNAAN MEMORY

Penggunaan memory pada bahasa pemrograman
PHP bisa dipantau dan ditampilkan menggunakan
fungsi PHP memory get usage () . Fungsi ini berfungsi
untuk mengetahi memory yang dibutuhkan selama
proses. Penulis juga bisa menambahkan fungsi PHP
untuk melihat berapa
jumlah penggunaan memory maksimum oleh kode PHP
yang kita buat.

Untuk membaca atau mengetahui penggunaan
memory, fungsi PHP memory get usage () diletakkan
pada awal dan akhir source code aplikasi yang
prosesnya ingin diketahui. Fungsi yang diletakkan
diawal proses aplikasi disebut sebagai memory awal,
sedangkan fungsi yang diletakkan pada akhir proses
aplikasi disebut memory akhir. Untuk mengetahui
memory yang digunakan pada aplikasi maka dilakukan
pengurangan antara memory akhir dengan memory
awal.

Dalam membandingkan memory yang dibutuhkan
oleh kedua algoritma penulis melakukan pembacaan
memory awal, memory akhir dan memory yang
digunakan dari hasil pengurangan memory akhir dan
memory awal. Pada masing-masing algoritma
dilakukan pembacaan memory dengan data masukkan
secara acak sebanyak sepuluh kali. Berikut adalah hasil
pembacaan penggunaan memory kedua algoritma.

memory get peak usage ()

Tabel 3. Perbandingan penggunaan memory

No. Dijkstra (KB) | Ant Colony (KB)
1 82,242 183,883
2 82,190 207,797
3 82,195 185,546
4 82,210 184,078
5 82,157 189,032

6 82,211 186,851

7 82,242 179,195

8 82,203 190,039

9 82,209 179,586

10 82,183 189,531
Jumlah 822,042 1875,538
Rata-rata 82,204 187,554

Perbandingan pemakaian memory

.
Y
=}

B oe e
S N &
s 3 8

L
=]

>4
=
= |

== Dijkstra

==Ant Colony

Memory yang digunakan (KB)
s oo
o o o
L=
<
|_—=

N
o

[=}

1 2 3 4 5 6 7 8 9 10

Percobaan ke:

Gambar 12. Grafik perbandingan penggunaan memory

Dari hasil pengujian diatas dapat diketahui bahwa
penggunaan memory pada Algoritma Dijkstra lebih
rendah daripada algoritma Ant Colony. Pada algoritma
Dijkstra memory yang digunakan antara proses yang
satu dengan yang lain nilainya terlihat relatif lebih
stabil dan konstan seperti pada gambar 5.11 yang mana
grafiknya hampir lurus. Sedangkan penggunaan
memory pada algoritma Ant Colony terdapat selisih
yang lebih besar antar proses yang satu dengan yang
lainnya dari pada algoritma Dijkstra.

Penggunaan memory pada Algoritma Ant Colony
terjadi perubahan yang relatif lebih besar dibandingkan
algoritma Ant Colony, hal dipengaruhi oleh jumlah
semut dan siklusnya, semakin besar nilai keduanya,
maka memory yang digunakan oleh Algortima Ant
Colony juga semakin besar. Hal ini dikarenakan jumlah
data masukan atau data yang diproses oleh algoritma
tersebut semakin banyak.

V. PERBANDINGAN KOMPLEKSITAS WAKTU

Dari analisa pseudocede kedua algoritma diatas
dapat diketahui bahwa Algoritma Dijkstra memiliki
kompleksitas waktu f(n) = O0(2n + 13) yang berarti
lebih lebih rendah daripada Algoritma Ant Colony
f(n) =0(5n+3). Kedua kompleksites tersebut
dapat dilihat dalam bentuk grafik seperti pada gambar
5.12

120

. 100 -

= /

3 80

g 60

E =Dijkstra
40 +

§ = Ant Colony
20

0

12345678 91011121314151617181920
Ukuran Masukan

Gambar 13. Grafik perbandingan kompleksitas waktu

Dari grafik diatas dapat dilihat bahwa penggunaan
algoritma Dijkstra memiliki pertambahan nilai
komputasi waktu yang semakin besar tetapi tidak
sebesar pada algoritma Ant Colony yang memiliki nilai
waktu komputasi yang jauh semakin besar ketika
ukuran data masukannya semakin besar.

VI. KESIMPULAN

Berdasarkan hasil perancangan, implementasi,
pengujian dan analisis sistem maka dapat diambil
kesimpulan sebagai berikut:

1. Perancangan aplikasi menentukan jalur terpendek
dengan menggunakan algoritma Dijkstra tidak perlu
menentukan parameter-parameter yang banyak
seperti pada algoritma Ant Colony.

2. Pada proses Algoritma, Dijkstra memerlukan data
jarak setiap kota terlebih dahulu sebelum memulai
proses Algortimanya. Sedangkan pada Algoritma
Ant Colony, tidak memerlukan jarak setiap kota
karena pada Ant Colony jarak antar kota dihitung
setelah semut menyelesaikan perjalanannya.
Sehingga Algoritma Dijkstra hanya bisa berjalan
jika terlebih dahulu diketahui jarak tiap Kkota,
sedangkan pada Algoritma Ant Colony tidak
memerlukan jarak tiap kota untuk menjalankan
prosesnya.

3. Penggunaan memory pada algoritma Dijkstra
menggunakan memory yang lebih rendah dengan
rata-rata 82,204 KB daripada algoritma Ant Colony
yang mana selamat pengujian memiliki rata-rata
memory sebesar 90,404 KB. Pada algoritma
Dijkstra, penggunaan memory untuk setiap
prosesnya relatif sama, sedangkan pada algoritma
Ant Colony penggunaan memory antar proses
terdapat perbedaan yang besar karena tergantung
pada parameter masukannya terutama banyak semut
dan siklusnya.

4. Dari analisa kompleksitas waktu terhadap
pseudocode masing-masing algoritma, Dijkstra
menghasilkan persamaan f(n) = 0(2n + 13) dan
Ant Colony menghasilkan persamaan f(n) =
O(5n + 3) yang mana bisa diketahui dari kedua
fungsi tersebut waktu yang dibutuhkan algortima
Dijkstra untuk memproses data lebih pendek
daripada algoritma Ant Colony.

VII. REFERENSI

Jong Jek Siang. 2004. Matematika Diskrit dan
Aplikasinya pada llmu Komputer, Yogyakarta:
Penerbit Andi.

Abdul Kadir.2003. Dasar Pemrograman Web Dinamis
Menggunakan PHP, Yogyakarta: Penerbit Andi.

Prahasta, E., 2001. Konsep-konsep Dasar Sistem
Informasi Geografis. Bandung: CV. Informatika

Wardy, Ibnu Sina, 2006. Penggunaan Graf dalam
Algoritma Semut untuk Melakukan Optimisasi.
Bandung : Institut Teknologi Bandung.

Google Developers. Getting Started - Google Maps
JavaScript API v3
https://developers.google.com/maps/documenta

tion/javascript/tutorial 17 April 2012

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial

