
1

Abstrak – Pencarian jalur terpendek merupakan

pencarian sebuah jalur pada graf berbobot yang

meminimalkan jumlah bobot sisi pembentuk jalur

tersebut. Dengan begitu jalur yang dihasilkan merupakan

jalur yang memiliki bobot atau jarak yang paling sedikit.

Salah satu penerapan pencarian jalur terpendek terdapat

pada aktivitas maskapai penerbangan yang mana

jalur-jalur antar kota yang dilewatinya akan membentuk

suatu graf berarah dan berbobot. Dari graf yang

terbentuk inilah akan diproses menggunakan algoritma

Dijkstra dan Ant Colony untuk menentukan jalur

terpendek dari suatu kota ke kota yang lain.

Pada proses Algoritma, Dijkstra memerlukan data

jarak setiap kota terlebih dahulu sebelum memulai proses

algortimanya. Sedangkan pada Algoritma Ant Colony,

tidak memerlukan jarak setiap kota karena pada Ant

Colony jarak antar kota dihitung setelah semut

menyelesaikan perjalanannya. Sehingga Algoritma

Dijkstra hanya bisa berjalan jika terlebih dahulu

diketahui jarak tiap kota, sedangkan pada Algoritma Ant

Colony tidak memerlukan jarak tiap kota untuk

menjalankan prosesnya. Dari hasil proses kedua

algoritma diketahui jalur yang dihasilkan oleh algoritma

Dijkstra lebih konsisten dan tepat daripada algoritma

Ant Colony yang mana memberikan hasil yang belum

tentu sama dalam setiap prosesnya. Rata-rata memory

yang digunakan pada algoritma Dijkstra sebesar 82,204

KB dan algoritma Ant Colony sebesar 90,404 KB.

Sedangkan dari analisa kompleksitas waktu pada

algoritma Dijkstra diperoleh persamaan () () dan pada Algoritma Ant Colony persamaannya () ().

Kata Kunci— Dijkstra, Ant Colony, jalur

terpendek, perbandingan algoritma

alam melakukan perjalanan jarak jauh seperti

misalnya perjalanan antar kota-kota besar di

Indonesia, tentunya tidak bisa diakukan hanya dengan

sekali perjalanan karena terbatasnya transportasi atau

kendala yang lain. Salah satu transportasi yang bisa

melakukan perjalanan jarak jauh, antar pulau dan

memerlukan waktu yang relatif singkat adalah pesawat

terbang. Akan tetapi maskapai penerbangan tidak

sepenuhnya menyediakan jasa perjalanan dari kota asal

ke kota tujuan secara langsung, melainkan mereka

memiliki jalur perjalanannya sendiri yang mana jalur

tersebut menghubungkan antara kota atau bandara

dengan kota terdekat lainnya. Untuk itu, kita harus

mengetahui jalur-jalur antar kota yang akan dilewati

agar bisa memperkitakan jalur mana saja yang akan

dilalui sehingga bisa ditemukan jalur yang terpendek

Dalam ilmu komputer, untuk menentukan jalur

terpendek diperlukan suatu algoritma. Algoritma yang

bisa digunakan untuk menentukan jalur terpendek

adalah algoritma Dijkstra dan Ant Colony. Dari

permasalahan tersebut maka diperlukan suatu

penelitian untuk menganalisa karakteristik maupun

penerapan kedua algoritma tersebut.

A. Skema Algoritma Dijkstra

Pada graf berikut akan menentukan jalur terpendek

dari node 1 ke node 3.

Gambar 1. Graf menentukan jalur terpendek dari

node 1 ke node 3

Ada beberapa jalur yang mungkin misalnya 1 -> 4

-> 3, atau 1 -> 2 -> 3 dan lain-lain, tetapi cara yang

paling efektif adalah :

a. Menentukan node awal dengan memberikan nilai

0 pada node tersebut dan memberikan nilai tak

hingga (∞) pada node yang lainnya

Gambar 2. node awal (1) bernilai 0 dan lainnya

bernilai tak hingga (∞)

Perbandingan Algoritma Dijkstra Dan Algoritma

Ant Colony Dalam Penentuan Jalur Terpendek

Finsa Ferdifiansyah – NIM 0710630014
Jurusan Teknik Elektro Konsentrasi Rekayasa Komputer

Fakultas Teknik

Universitas Brawijaya, Jl. M.T. Haryono No. 167, Malang 65145, Indonesia

finsa@ferdifiansyah.com

Dosen Pembimbing : 1. Adharul Muttaqin ST.,MT

2. Ir. Muhammad Aswin, MT

D

mailto:finsa@ferdifiansyah.com

2

b. Menentukan bobot paling kecil untuk melangkah

ke node selanjutnya. Pada gambar diketahui

bahwa untuk melangkah ke node 4 memiliki bobot

terkecil, kemudian memberikan nilai atau label

permanen pada node 4 yaitu bernilai 5.

Gambar 3. Menentukan bobot minimum

c. Mencari node terpendek berikutnya yaitu yang

memiliki bobot minimum dengan

membandingkan nilai biaya menuju node tersebut

atau melalui node yang telah memiliki nilai

permanen.

Gambar 4. Menentukan bobot minimum untuk

menuju node selanjutnya

d. Node 2 dan node 5 memiliki nilai yang sama,

maka selanjutnya dilakukan pencarian jalur yang

paling efektif dari kedua node tersebut

Gambar 5. Menentukan jalur yang paling efektif

dari node 5

Gambar 6. Menentukan jalur yang paling efektif

dari node 2

Setelah dibandingkan, ternyata jalur dari node 2

memiliki nilai paling minimum. Sehingga bisa

ditentukan jalur terpendek dari node 1 ke node 3 adalah

1 » 4 » 2 » 3.

B. Pseudocode Dijkstra

1 function Dijkstra(Graph, source):

2 for each vertex v in Graph:

3 dist[v] := infinity ;

4 previous[v] := undefined ;

5 end for

6

7 dist[source] := 0 ;

8 Q := the set of all nodes in Graph ;

9

10 while Q is not empty:

11 u := vertex in Q with smallest distance in

dist[] ;

12 remove u from Q ;

13 if dist[u] = infinity:

14 break ;

15 end if

16

17 for each neighbor v of u:

18 alt := dist[u] + dist_between(u, v) ;

19 if alt < dist[v]:

20 dist[v] := alt ;

21 previous[v] := u ;

22 decrease-key v in Q;

23 end if

24 end for

25 end while

26 return dist;

3

C. Diagram Alir Algoritma Dijkstra

Gambar 7. Diagram Alir Dijkstra

II. ALGORITMA ANT COLONY

Algoritma Semut (Ant Colony) diadopsi dari

perilaku koloni semut yang dikenal sebagai sistem

semut (Dorigo, 1996). Secara alamiah koloni semut

mampu menemukan rute terpendek dalam perjalanan

dari sarang ke tempat-tempat sumber makanan. Koloni

semut dapat menemukan rute terpendek antara sarang

dan sumber makanan berdasarkan jejak feromon pada

lintasan yang telah dilalui. Semakin banyak semut yang

melalui suatu lintasan, maka akan banyak jalur yang

dibuat dan memungkinkan semakin besar untuk

menentukan dari jalur terpendek yang dibuat oleh

semut-semut tadi.

A. Skema Algoritma Ant Colony

Secara logika dan matematik semut-semut dari titik

asal yang sama, misalnya sarang, bergerak

sendiri-sendiri melewati jalur masing-masing menuju

makanan sebagai titik tujuannya. Setelah mereka

sampai pada titik tujuan, semut-semut ini di data satu

per satu untuk mengetahui jalur yang dilalui beserta

jaraknya. Semut yang menempuh jarak terpendek

adalah pemenangnya dan jalur yang dilaluinya

ditetapkan sebagai jalur terpendek.

Berikut adalah tahapan-tahapan algoritma Semut

dalam graf :

Gambar 8. Perjalanan Semut

a. Pada gambar 2.9.a menunjukkan semut yang

akan melakukan perjalanan mencari tempat

dimana ada makanan, dari X menuju Y.

b. Semut akan melakukan gerakan secara acak

menuju tempat makanan dengan jalur

masing-masing. Seperti pada gambar 2.9.b

semut berjalan dengan jalurnya masing-masing.

c. Setelah berjalan secara acak berdasarkan

jalurnya masing-masing kemudian semut-semut

tersebut akan bertemu lagi dimana tempat

makanan berada seperti pada gambar 2.9.c

d. Pada saat melakukan perjalanan melalui

jalurnya masing-masing, semut meninggalkan

feromon sebagai jejak yang akan diikuti oleh

semut yang lainnya. Semakin banyak semut dan

semakin dekat jarak yang ditempuh maka

feromon juga semakin kuat sehingga semut

yang lainnya akan mengikuti jalur tersebut.

e. Pada optimisasi algoritma semut, proses tadi

akan dilakukan secara berulang sesuai dengan

siklus maksimum yang telah ditentukan.

B. Pseudocode Ant Colony

1 Inisialisasi parameter α, β, , m, Q

2 Inisialisasi titik pertama atau asal semut

3 begin

4 () ()

5 ()

6

7 //calculate next path, feromon and distance

8 function Probabilistik (from)

9 for m = 1; m++ : m

10 for t = 1; t++ : siklus

11 () () () ∑ () ()

12 end for

13 end for

14 return dist, path;

15

16 function updateFeromon ()

17

18

19 return

4

20

21 // choice distance & shortpath

22 for x = 1; x++

23 if (min (dist(x)))

24 shortpath = path;

25 end if

26 end for

27 end;

C. Diagram Alir Algoritma Ant Colony

Mulai

Inisialisasi

Parameter

(Statis)

Menentukan

banyak semut

Semut = 1

Hitung

Probabilitas

Semut

Bangkitkan

Bilangan

Random

Tujuan

dicapai?

Hitung Jarak

Semut =

Banyak Semut

Yes

Hitung Jarak

Total

Menampilkan

Jarak

Tependek dan

Jumlah Semut

Tampilkan

Jalur

Terpendek

Selesai

Semut = Semut

+ 1

No

No

Yes

Update

Feromon

Siklus Max?

Yes

No

Gambar 9. Diagram Alir Ant Colony

III. PERBANDINGAN JALUR TERPENDEK

Dalam pengujian perbandingan jalur terpendek yang

dihasilkan oleh kedua algoritma, penulis menguji kedua

algoritma dengan data masukkan yang sama dan setiap

masukkan dilakukan pengujian sebanyak sepuluh kali.

Langkah-langkah pengujian untuk setiap algoritma

yaitu dengan cara memasukkan data kota asal dan

tujuan yang sama pada masing-masing algoritma. Pada

algoritma Ant Colony nilai parameter jumlah semut dan

siklus maksimum bernilai 50 dan 25.

Setelah memasukkan data dan melakukan proses

pencarian dengan masing-masing algoritma, maka akan

muncul hasil dari proses tersebut seperti pada gambar

10 dan gambar 11. Kemudian data hasil pengujian

dicatat dan dibandingkan.

Gambar 10. Hasil pencarian jalur terpendek

Gambar 11. Jalur yang dihasilkan pada peta

Tabel 1. Hasil pengujian algoritma Dijkstra

Tabel 2. Hasil pengujian algoritma Ant Colony

Kota Asal
Kota

Tujuan

Jarak

Total (km)

Jumlah

Kota
Jalur

1 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

2 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

3 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

4 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

5 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

6 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

7 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

8 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

9 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

10 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

No

Input Output

Kota Asal
Kota

Tujuan

Jarak

Total (km)

Jumlah

Kota
Jalur

1 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

2 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

3 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

4 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

5 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

6 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

7 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

8 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

9 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

10 Surabaya Manado 1735,523 2
Surabaya -

Makasar - Manado

No

Input Output

5

Dari contoh pengujian diatas dapat diketahui bahwa

penggunaan Algoritma Dijkstra dan Ant Colony

menghasilkan jalur denan jalur terpendek yang sama.

Pada Algoritma Dijkstra menghasilkan jalur dan jarak

yang sama untuk setiap prosesnya, tetapi pada

Algoritma Ant Colony jarak dan jalur yang dihasilkan

untuk setiap prosesnya tidak selalu sama walaupun

pada algoritma ini juga dapat menemukan jalur dan

jarak terpendek.

Proses dan hasil algortima Ant Colony juga

dipengeruhi oleh jumlah semut (m) dan sikusnya.

Semakin besar jumlah semut dan siklusnya makan hasil

dari algoritma Ant Colony akan semakin maksimal.

Dengan rincian semakin banyak semut yang melakukan

perjalanan, maka semakin besar kemungkinan untuk

menemukan jarak terpendek. Sedangkan siklus

perjalanan mempengaruhi banyaknya jalur yang

ditempuh oleh semut. Dalam hal ini juga akan

mempengaruhi jika dalam graf terdapat banyak simpul

atau semakin banyak kota.

IV. PERBANDINGAN PENGGUNAAN MEMORY

Penggunaan memory pada bahasa pemrograman

PHP bisa dipantau dan ditampilkan menggunakan

fungsi PHP memory_get_usage(). Fungsi ini berfungsi

untuk mengetahi memory yang dibutuhkan selama

proses. Penulis juga bisa menambahkan fungsi PHP

memory_get_peak_usage() untuk melihat berapa

jumlah penggunaan memory maksimum oleh kode PHP

yang kita buat.

Untuk membaca atau mengetahui penggunaan

memory, fungsi PHP memory_get_usage()diletakkan

pada awal dan akhir source code aplikasi yang

prosesnya ingin diketahui. Fungsi yang diletakkan

diawal proses aplikasi disebut sebagai memory awal,

sedangkan fungsi yang diletakkan pada akhir proses

aplikasi disebut memory akhir. Untuk mengetahui

memory yang digunakan pada aplikasi maka dilakukan

pengurangan antara memory akhir dengan memory

awal.

Dalam membandingkan memory yang dibutuhkan

oleh kedua algoritma penulis melakukan pembacaan

memory awal, memory akhir dan memory yang

digunakan dari hasil pengurangan memory akhir dan

memory awal. Pada masing-masing algoritma

dilakukan pembacaan memory dengan data masukkan

secara acak sebanyak sepuluh kali. Berikut adalah hasil

pembacaan penggunaan memory kedua algoritma.

Tabel 3. Perbandingan penggunaan memory

No. Dijkstra (KB) Ant Colony (KB)

1 82,242 183,883

2 82,190 207,797

3 82,195 185,546

4 82,210 184,078

5 82,157 189,032

6 82,211 186,851

7 82,242 179,195

8 82,203 190,039

9 82,209 179,586

10 82,183 189,531

Jumlah 822,042 1875,538

Rata-rata 82,204 187,554

Gambar 12. Grafik perbandingan penggunaan memory

Dari hasil pengujian diatas dapat diketahui bahwa

penggunaan memory pada Algoritma Dijkstra lebih

rendah daripada algoritma Ant Colony. Pada algoritma

Dijkstra memory yang digunakan antara proses yang

satu dengan yang lain nilainya terlihat relatif lebih

stabil dan konstan seperti pada gambar 5.11 yang mana

grafiknya hampir lurus. Sedangkan penggunaan

memory pada algoritma Ant Colony terdapat selisih

yang lebih besar antar proses yang satu dengan yang

lainnya dari pada algoritma Dijkstra.

Penggunaan memory pada Algoritma Ant Colony

terjadi perubahan yang relatif lebih besar dibandingkan

algoritma Ant Colony, hal dipengaruhi oleh jumlah

semut dan siklusnya, semakin besar nilai keduanya,

maka memory yang digunakan oleh Algortima Ant

Colony juga semakin besar. Hal ini dikarenakan jumlah

data masukan atau data yang diproses oleh algoritma

tersebut semakin banyak.

V. PERBANDINGAN KOMPLEKSITAS WAKTU

Dari analisa pseudocede kedua algoritma diatas

dapat diketahui bahwa Algoritma Dijkstra memiliki

kompleksitas waktu () () yang berarti

lebih lebih rendah daripada Algoritma Ant Colony () () . Kedua kompleksites tersebut

dapat dilihat dalam bentuk grafik seperti pada gambar

5.12

Gambar 13. Grafik perbandingan kompleksitas waktu

6

Dari grafik diatas dapat dilihat bahwa penggunaan

algoritma Dijkstra memiliki pertambahan nilai

komputasi waktu yang semakin besar tetapi tidak

sebesar pada algoritma Ant Colony yang memiliki nilai

waktu komputasi yang jauh semakin besar ketika

ukuran data masukannya semakin besar.

VI. KESIMPULAN

Berdasarkan hasil perancangan, implementasi,

pengujian dan analisis sistem maka dapat diambil

kesimpulan sebagai berikut:

1. Perancangan aplikasi menentukan jalur terpendek

dengan menggunakan algoritma Dijkstra tidak perlu

menentukan parameter-parameter yang banyak

seperti pada algoritma Ant Colony.

2. Pada proses Algoritma, Dijkstra memerlukan data

jarak setiap kota terlebih dahulu sebelum memulai

proses Algortimanya. Sedangkan pada Algoritma

Ant Colony, tidak memerlukan jarak setiap kota

karena pada Ant Colony jarak antar kota dihitung

setelah semut menyelesaikan perjalanannya.

Sehingga Algoritma Dijkstra hanya bisa berjalan

jika terlebih dahulu diketahui jarak tiap kota,

sedangkan pada Algoritma Ant Colony tidak

memerlukan jarak tiap kota untuk menjalankan

prosesnya.

3. Penggunaan memory pada algoritma Dijkstra

menggunakan memory yang lebih rendah dengan

rata-rata 82,204 KB daripada algoritma Ant Colony

yang mana selamat pengujian memiliki rata-rata

memory sebesar 90,404 KB. Pada algoritma

Dijkstra, penggunaan memory untuk setiap

prosesnya relatif sama, sedangkan pada algoritma

Ant Colony penggunaan memory antar proses

terdapat perbedaan yang besar karena tergantung

pada parameter masukannya terutama banyak semut

dan siklusnya.

4. Dari analisa kompleksitas waktu terhadap

pseudocode masing-masing algoritma, Dijkstra

menghasilkan persamaan () () dan

Ant Colony menghasilkan persamaan () () yang mana bisa diketahui dari kedua

fungsi tersebut waktu yang dibutuhkan algortima

Dijkstra untuk memproses data lebih pendek

daripada algoritma Ant Colony.

VII. REFERENSI

Jong Jek Siang. 2004. Matematika Diskrit dan

Aplikasinya pada Ilmu Komputer, Yogyakarta:

Penerbit Andi.

Abdul Kadir.2003. Dasar Pemrograman Web Dinamis

Menggunakan PHP, Yogyakarta: Penerbit Andi.

Prahasta, E., 2001. Konsep-konsep Dasar Sistem

Informasi Geografis. Bandung: CV. Informatika

Wardy, Ibnu Sina, 2006. Penggunaan Graf dalam

Algoritma Semut untuk Melakukan Optimisasi.

Bandung : Institut Teknologi Bandung.

Google Developers. Getting Started - Google Maps

JavaScript API v3

https://developers.google.com/maps/documenta

tion/javascript/tutorial 17 April 2012

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/tutorial

