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AbstrakBabi merupakan inang alami dari virus inϐluensa yang secara anatomis, ϐisiologis, 
dan imunitas mirip (similar) dengan yang ada pada manusia. Virus inϐluenza subtipe 
A yang ada pada manusia yaitu H1N1, H3N2 dan H1N2 merupakan enzootic pada populasi babi di dunia. babi dapat terinfeksi oleh turunan-turunan virus inϐluenza 
tipe A dari manusia maupun dari burung dan dalam hal ini dianggap sebagai inang 

sementara (Intermediate hosts) dari turunan-turunan virus ϐlu babi yang berpotensi menyebabkan epidemi bahkan pandemi. Evolusi antigenik dari virus inϐluenza 
pada babi terjadi dengan laju sekitar 6 kali lebih lambat dibandingkan dengan virus inϐluenza pada manusia. Dalam tulisan ini akan dikaji model matematika untuk epidemi ϐlu babi pada populasi babi. Model yang diberikan merupakan 
model deterministik dengan laju kontak jenuh yang merupakan perumuman dari 

laju kontak standar. Perumuman ini dinyatakan dengan adanya probabilitas suatu 

individu melakukan kontak yang dinyatakan sebagai suatu fungsi dari populasi. 

Pengkajian yang dilakukan meliputi penentuan titik ekuilibrium model matematika 

dan analisa kestabilannya. Diharapkan hasil kajian ini dapat bermanfaat dalam penanggulangan wabah ϐlu babi pada sumber utama yaitu populasi babi sehingga 
dapat dilakukan pencegahan sebelum mewabah di populasi manusia.

Abstract

Pigs are a natural host of inϔluenza virus that are similar anatomically, physiologically, 
and immunity which in humans. Inϔluenza viruses of A subtype in humans are H1N1, 
H3N2 and H1N2. They are enzootic in the swine population in the world. Pigs can be 

infected by strains of type A inϔluenza viruses from humans or from birds. Pigs are 
considered as a temporary host (intermediate hosts) of the derivatives of the swine 

ϔlu virus that has the potential to cause epidemics and even pandemics. Antigenic 
evolution of inϔluenza viruses in pigs occurred at rate about 6 times slower than the 
inϔluenza viruses in humans. In this paper the mathematical model will be assessed 
for swine ϔlu epidemic in pig populations. The model provided a deterministic model 
with saturated contact rate which is a generalization of the standard contact rate. 

This generalization is expressed by the probability of an individual contact that is 

expressed as a function of population. In this paper, it will be analyzed the equilibrium 

point of mathematical models and their stability.
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Pendahuluan

Dalam Fraser et al. (2009) disebutkan 

bahwa pada 29 April 2009 WHO mengumumkan 

laju penyebaran secara global dari strain virus inϐluenza A (H1N1) yang terdeteksi pada 
minggu sebelumnya meningkatkan level tanda 

global pandemic sampai ke level 5. Level 5 

mengindikasikan transmisi antar manusia yang 

terjadi terus-menerus. Dalam Fitzgerald (2009) 

disebutkan bahwa pada sekitar 15 April sampai 5 Mei 2009, virus inϐluenza telah menyebar 
dengan cepat dari Meksiko ke 41 negara di 

Amerika serikat dan menyebabkan 642 kasus 

di Amerika serikat. Virus tersebut mencapai 

Kanada dan Eropa pada waktu yang bersamaan 

dan pada 27 Mei 2009 telah  mencapai 46 negara 

dengan 92 kasus kematian [80 di Meksiko dan 

10 di AS]. Dalam Fitzgerald (2009) dan Fraser et 

al. (2009) disebutkan bahwa Penyebaran virus inϐluenza dalam epidemi melibatkan orang yang 
sering melakukan perjalanan ke berbagai daerah 

yang terkena wabah.

Babi merupakan inang alami dari virus inϐluensa yang secara anatomis, ϐisiologis, dan 
imunitas mirip (similar) dengan yang ada pada manusia. Virus inϐluenza subtipe A yang ada 
pada manusia yaitu H1N1, H3N2 dan H1N2 

merupakan enzootic pada populasi babi di dunia 

(Van Reeth et al. 2009). Dalam Belshe (2009) disebutkan bahwa virus ϐlu babi telah ada 
beredar dalam populasi babi selama lebih dari 

satu decade. Dalam Brown (2000) dan Fitzgerald 

(2009) disebutkan bahwa babi dapat terinfeksi oleh turunan-turunan virus inϐluenza tipe A dari 
manusia maupun dari burung dan dalam hal ini 

dianggap sebagai inang sementara (Intermediate 

hosts) dari turunan-turunan virus ϐlu babi yang 
berpotensi menyebabkan epidemi bahkan 

pandemi. Fitzgerald (2009) juga menyebutkan bahwa evolusi antigenik dari virus inϐluenza 
pada babi terjadi dengan laju sekitar 6 kali lebih lambat dibandingkan dengan virus inϐluenza 
pada manusia.

Dalam tulisan ini akan dikaji model yang 

sama tetapi kontak yang terjadi diperumum 

yaitu dengan menambahkan probabilitas suatu 

individu melakukan kontak yang dinyatakan 

sebagai suatu fungsi dari populasi ke dalam 

model tersebut. Selanjutnya akan dilihat 

perubahan terhadap nilai  dan kestabilan titik  

ekuilibriumnya.  Dalam Diekmann & Heesterbeck 

(2000)  dideϐinisikan sebagai laju terjadinya 
infeksi sekunder yang disebabkan oleh infeksi 

primer tunggal dalam suatu populasi yang rentan 

secara keseluruhan. 

Hasil dan PembahasanBeberapa fakta terkait dengan epidemi ϐlu 
babi pada populasi babi dirujuk dari beberapa 

sumber. Dalam Syafriati (2005) disebutkan bahwa infeksi virus inϐluensa babi dapat dengan 
cepat menyebar pada sekelompok ternak babi 

dan dengan cepat pula sembuh. Penyakit ini 

menyebar sangat cepat hampir 100% babi yang 

rentan terkena. Biasanya sembuh secara tiba-

tiba pada hari ke 5-7 setelah gejala klinis. Pada 

saat terjadi wabah, dilaporkan adanya kenaikan 

kematian anak babi, fertilitas menurun, terjadi 

abortus pada kebuntingan tua yang dapat diikuti 

wabah penyakit pada kelompok ternak yang tidak kebal. Penyebaran virus inϐluensa dari babi 
ke babi dapat melalui kontak moncong babi, 

melalui udara atau droplet. Masa inkubasi sering 

berkisar antara 1-2 hari, tetapi bisa 2-7 hari 

dengan rata-rata 4 hari. Terjadi tingkat kematian 

tinggi pada anak anak babi yang dilahirkan dari 

induk babi yang tidak kebal dan terinfeksi pada 

waktu beberapa hari setelah dilahirkan. Anak-

anak babi yang lahir dari induk yang terinfeksi 

pada saat bunting, akan terkena penyakit pada 

umur 2-5 hari setelah dilahirkan, sedangkan 

induk tetap memperlihatkan gejala klinis yang 

parah. Dalam Brown (2000) dan Fitzgerald 

(2009) disebutkan bahwa babi dapat terinfeksi oleh turunan-turunan virus inϐluenza tipe A dari 
manusia maupun dari burung dan dalam hal ini 

dianggap sebagai inang sementara (Intermediate 

hosts) dari turunan-turunan virus ϐlu babi yang 
berpotensi menyebabkan epidemi bahkan 

pandemi. Fitzgerald (2009) juga menyebutkan bahwa evolusi antigenik dari virus inϐluenza 
pada babi terjadi dengan laju sekitar 6 kali lebih lambat dibandingkan dengan virus inϐluenza 
pada manusia.

Model SEIR merupakan suatu model 

matematika untuk wabah penyakit yang 

mempunyai masa laten. Masa laten dalam  Diekmann & Heesterbeck (2000) dideϐinisikan 
sebagai masa suatu individu telah terinfeksi oleh 

penyakit tetapi individu tersebut belum dapat 

menularkan penyakit kepada individu yang lain. Model matematika untuk kasus epidemi ϐlu 
babi pada populasi babi menggunakan model 

epidemi SEIR dikarenakan masa inkubasi dan 

masa infeksi yang hampir sama lamanya yaitu 

masa inkubasi rata-rata 4 hari dan masa infeksi 

rata-rata 6 hari (Syafriati 2005).

Penyebaran suatu penyakit dipengaruhi 

oleh jumlah kasus baru tiap satuan waktu. 

Penyebaran ini berperan penting dalam 

mempelajari matematika epidemiologi. Bentuk 
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umum dari penularan penyakit yang tergantung 

dari ukuran populasi dituliskan  dengan  

S dan I berturut-turut menyatakan jumlah 

individu yang suspectible dan Infected saat waktu  t. β.  probabilitas penularan penyakit di antara 
dua individu yang melakukan kontak per satuan 

waktu, dan C(N) probabilitas dari suatu individu 

melakukan kontak tersebut (Thieme & Castillo-

Chavez dalam Zhang & Ma 2003). C(N) biasanya disebut laju kontak. βC(N) adalah jumlah rata-
rata kontak yang terpenuhi dari suatu individu 

tiap satuan waktu atau disebut juga laju kontak 

jenuh.

Heesterbeek dan Metz dalam Zhang & Ma 

(2003) menurunkan rumus laju kontak jenuh 

dalam populasi yang bermacam-macam sebagai 

berikut 

(1)

dengan b adalah suatu konstanta positif 

yang menyatakan laju kontak jenuh dari 

hubungan-hubungan perseorangan yang terjadi 

secara acak dalam sebuah populasi.

Jelas

Jadi untuk nilai N yang kecil,   bNNC   dan untuk 

nilai N yang besar,   1NC . Dalam tulisan ini 

akan dikaji tentang model epidemi SEIR dengan rata-rata kontak jenuh C(N) yang dideϐinisikan 
pada persamaan (1) dengan struktur populasi 

menggunakan rekruitmen dan kematian. 

Asumsi-asumsi yang berlaku dalam 

pembentukan model ini meliputi: (1) laju 

rekruitmen konstan dan masuk ke kelas S, (2) 

laju kematian alami proporsional terhadap 

jumlah populasi (kematian alami terjadi di setiap 

kelas), (3) terjadi kematian karena penyakit, (4) 
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Gambar 1 . Diagram transfer epidemi ϐlu babi pada populasi babi
Tabel 1. Daftar variabel-variabel dalam model matematika

Variabel Arti

N(t)

S(t)

E(t)

I(t)

R(t)

: Ukuran populasi total saat 

: Ukuran subpopulasi yang rentan terhadap infeksi virus saat 

: Ukuran subpopulasi laten saat 

: Ukuran subpopulasi terinfeksi saat 

: Ukuran subpopulasi yang sembuh saat 

Tabel 2. Daftar parameter-parameter dalam model matematika

Parameter Arti

Aμβε
0γ
0α
0

: laju rekruitmen 

: laju kematian alami 

: probabilitas penularan penyakit di antara 2 individu yang melakukan kontak per 

satuan waktu 

: laju individu laten menjadi terinfeksi Ukuran subpopulasi laten saat 

: laju kesembuhan 

: laju kematian karena infeksi
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tidak ada proses karantina dan vaksinasi, (5) 

individu akan kebal setelah sembuh, (6) individu 

yang laten (pada StageE) tidak bisa menularkan 

penyakit, (7) setiap individu yang terinveksi 

selalu melewati masa laten, (8) individu yang 

lahir dari induk yang sakit lebih rentan dari pada 

individu yang lahir dari induk yang sehat  dan 

infeksi karena virus ini bukan penyakit turunan, 

(9) anak yang terinfeksi tidak dibedakan laju 

kesembuhannya dengan dewasa, dan (10) 

rentang waktu terjadinya epidemi lagi lebih lama 

dari pada rata-rata masa hidup babi sehingga 

babi yang telah sembuh tidak akan menghadapi 

epidemi lagi. Hal ini berakibat kekebalan yang 

diperoleh tidak bersifat sementara. Diagram 

transfer model epidemi ini diberikan pada 

Gambar 1.Deϐinisi variabel-variabel dan parameter-
parameternya diberikan pada Tabel 1 dan Tabel 

2. Nilai-nilai parameter pada Tabel 2 bernilai 

positif.

Model matematika dari diagram transfer 

pada Gambar1 diberikan pada sistem (2) berikut.

 (2)

Misalkan . 

Jadi   dan .

Misalkan c
0
=βb, jadi  .

Jadi sistem (2) ekivalen dengan sistem (3) 

berikut:

  (3)

Misalkan  

dan . Sistem (3) ekivalen dengan sistem (4).

 (4)

Dari sistem (4) diperoleh 

Jadi sistem (4) ekivalen dengan sistem (5) 

berikut. 

(5) 

Titik ekuilibrium N diperoleh saat

. 

Jadi titik ekuilibrium N adalah .  Saat  

I = 0 diperoleh titik ekuilibrium populasi bebas 

penyakit adalah . Jadi nilai   Karena untuk t→∞ berlaku  
maka domain sistem dapat kita batasi pada 

daerah  

dengan 
4

R  menyatakan daerah non negatif di 

R4.

Titik Ekuilibrium

Titik ekuilibrium diperoleh dengan 

menjadikan  dan  sama dengan 

nol sehingga diperoleh sistem (6) berikut

  (6)
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(8)

Dari sistem (8) diperoleh

  dan 

Substitusikan ke persamaan kedua dari sistem 

(8), diperoleh

Karena h(N)=1+bN+√(1+2bN), maka persamaan 
di atas menjadi:

Dideϐinisikan  dengan 

Jelas

 

Karena 

 

berakibat

Jadi 

Karena R
0
>1, maka a-αb>0.

Jelas  dan

 

Karena R
0
>1, maka .

Jelas F terdiferensiabel tingkat pertama 

pada  sehingga F kontinu pada , karena  

F(0)<0 dan  maka berdasarkan teorema 

nilai antara (Bartle & Shebert 1994), ada paling 

sedikit satu  sehingga F(N*)=0.

Ditunjukkan   tersebut tunggal.

Jelas 

Teorema yang berkaitan dengan eksistensi 

titik ekuilibrium diberikan teorema 1.

Teorema 1

Misalkan  dengan δ=1+γ+α dan ω=1+ε. 
Jika R

0
≤1 maka  sistem  (5) hanya  mempunyai 

satu titik ekuilibrium yaitu titik ekuilibrium 

bebas penyakit .

Jika R
0
>1 maka sistem (5) mempunyai 

dua titik ekuilibrium yaitu titik ekuilibrium 

bebas penyakit P
0
 dan titik ekuilibrium endemik  

P1=(N*,E*,I*,R*) dengan 

 dan N* 

penyelesaian dari persamaan

Bukti:

Dari sistem (6),  jika I = 0 diperoleh  

dan E = R = 0. Diperoleh titik ekuilibrium bebas 

penyakit . 

Eksistensi dari titik ekuilibrium P
0
 tidak 

dipengaruhi oleh nilai dari R
0
. Jadi untuk segala 

kondisi R
0
, titik ekuilibrium ini pasti ada.

Dari persamaan ketiga sistem (6) diperoleh 

, substitusikan ke persamaan kedua 

sistem (6) didapat   

(7)

Susbstitusikan persamaan pertama,  

ketiga, dan keempat dari sistem (6) ke 

RIEN  , diperoleh  
Substitusikan ke persamaan (7) diperoleh 

Syarat titik ekuilibrium endemik adalah I > 0. 

Jadi 

Dideϐinisikan  .

Jadi titik ekuilibrium endemik ada saat R
0
>1.

Pencarian titik ekuilibrium endemik hanya 

dilakukan saat R
0
>1 .Substitusikan persamaan δ=1+γ+α dan ω=1+ε 

ke sistem (6), kemudian ganti persamaan 

kedua dalam sistem (6) dengan persamaan (7), 

diperoleh sistem (8) berikut.
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Jadi 

Dengan cara serupa diperoleh

Jadi graϐik F turun saat  dan naik saat 

Jelas  karena kalau tidak maka 

kontradiksi dengan .Karena F(0)<0 dan graϐik F monoton turun 
saat , maka untuk setiap nilai-

nilai , F(N)≠0. Karena graϐik F 
monoton naik saat  dan untuk setiap , F(N)≠0., maka , dengan  

F(N*)=0 dan N* tersebut tunggal. Ketunggalan  N* dijamin oleh kemonotonan graϐik F.
Jadi dapat disimpulkan untuk R

0
>1, terdapat 

dengan tunggal titik ekuilibrium endemik 

P
1
=(N*,E*,I*,R* )

 dengan , , , dan 

N*  penyelesaian dari persamaan 

Kestabilan Titik Ekuilibrium

Ditunjukkan , fungsi yang tidak 

turun

Jelas

 

Karena b >0 maka 

Jadi C(N) tidak turun, berarti untuk setiap  

berlaku  berakibat .

Teorema 2

Misalkan  dengan δ=1+γ+α dan ω=1+ε.
Jika R

0
<1 maka titik ekuilibrium bebas 

penyakit  stabil 

asimtotik lokal.

Jika R
0
>1 maka titik ekuilibrium bebas penyakit 

P
0
 tidak stabil dan titik ekuilibrium endemik 

P
1
stabil asimtotik lokal.

Bukti:

Jelas matriks jacobian dari sistem (5) adalah se-

bagai berikut.

dengan 

[B1] Untuk P
0
, matrik jacobiannya adalah

Karena hanya ada satu nilai tak nol pada 

kolom pertama dan keempat, dan keduanya 

bernilai negatif, maka kita dapat memeriksa 

apakah nilai-nilai eigen dari matriks  

mempunyai bagian real negatif dengan 

memeriksa matriks 2 x 2 yang merupakan blok 

dari matriks  (Anton 1991). Matriks 2 

x 2 tersebut adalah

Jelas  tr(J
01

 )=-(ω+δ)<0 dan
Jadi  det(J

01
 )>0  dipenuhi saat R

0
<1. 

Jadi nilai eigen matriks  semuanya 

mempunyai bagian real negatif saat R
0
<1 dan ada 

minimal satu nilai eigen matriks   yang 

mempunyai bagian real positif saat R
0
>1

Jadi titik ekuilibrium P
0
 stabil asimtotik lokal 

saat R
0
<1 dan tidak stabil saat R

0
>1.

[B2] Dibuktikan untuk R
0
>1, titik ekuilibrium en-

demik P
1
 stabil asimtotik lokal

Matrik Jacobian titik  P
1
 adalah
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Penutup

Dari pembahasan di atas diperoleh 

beberapa kesimpulan yaitu saat  wabah epidemi ϐlu babi akan hilang dengan jumlah orang yang 
terinfeksi pada awalnya tidak dibatasi dan 

saat  dengan kondisi tertentu epidemi ϐlu babi 
tidak hilang dalam artian masih ada orang yang 

terinfeksi. Saran yang dapat diberikan adalah 

adanya penelitian lanjutan yang berkaitannya 

dengan wabah yang terjadi pada populasi 

manusia. 

Daftar Pustaka

Anton H. 1991. Aljabar Linear Elementer. Jakarta: Er-

langga

Bartle RG & Shebert DR.1994. Introduction to Real 

Analysis, second Edition. New York: John Wiley 

& Sons, Inc

Belshe RB. 2009. Implications of the Emergence of a Novel H1 Inϐluenza Virus. N Engl J Med 

360(25): 2667-2668

Brown IH. 2000. The Epidemiology and Evolution of Inϐluenza Viruses in Pigs. Veterinary Microbiol-

ogy 74: 29-46 

Diekmann O & Heesterbeck JAP. 2000. Mathematical 

Epidemiology of Infectious Diseases, Mathemat-

ical and Computational Biology. Chichester: 

WileyFitzgerald DA. 2009. Human Swine Inϐluenza A 
[H1N1]: Practical Advice for Clinicians Early in 

the Pandemic. Paediatric Respiratory Reviews 

10: 154-158

Fraser C, Donnely AC, Cauchemez S, Hanage WP, Van Kerkh MD, Hollingsworth D, Grifϐin J, Baggaley 
RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley 

RW, Grassly NC, Balloux B, Ghani AC, Fergu-

son NM, Rambaut A, Pybus OG, Lopez-Gatell 

H, Alpuche-Aranda CM, Chapela LB, Zavala EP, 

Guevara DM, Checchi F, Garcia E, Hugonnet S, 

& Roth C. 2009. Pandemic Potential of a Strain of Inϐluenza A (H1N1): Early Findings. Science 

324: 1557-1561

Olsder G J. 1994 Mathematical Systems Theory. Delftse 

Uitgevers Maatschappij b.v

Syafriati T. 2005. Mengenal Penyakit Inϔluenza Babi. 
Prosiding Lokakarya Nasional Penyakit Zoono-

sis Bogor, 15 September 2005: 102-109

Van Reeth K, Braeckmans D, Cox E, Van Borm S, van 

den Berg T, Goddeeris B, & De Vleeschauwer 

A. 2009. Prior Infection with an H1N1 Swine Inϐluenza Virus Partially Protects Pigs Against a Low Pathogenic H5N1 Avian Inϐluenza Virus. 
Vaccine 27: 6330-6339

Zhang J & Ma Z. 2003. Global dynamic of an SEIR 

epidemic model with saturating contact rate, 

Mathematical Biosciences :15-23

Berdasarkan persamaan (7) diperoleh

dengan

 

Dicari persamaan karakteristik J(N*,E*,I*,R*)=J*:

Misalkan J(N*,E*,I*,R*)=J*.

Jelas

Persamaan karakteristik untuk J(N*,E*,I*,R*)=J* 

adalah

Jelas persamaan λ+1=0 menghasilkan nilai eigen  λ=-1<0.
Jadi akan diperiksa persamaan karakteristik

dengan

Jelas 

 Jadi berdasarkan kriteria Routh-Hurwitz (Ol-

sder 1994) titik ekuilibrium endemik P
1
 stabil 

asimtotik lokal saat R
0
>1 .


