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dan imunitas mirip (similar) dengan yang ada pada manusia. Virus influenza subtipe
A yang ada pada manusia yaitu H1N1, H3N2 dan H1N2 merupakan enzootic pada
populasi babi di dunia. babi dapat terinfeksi oleh turunan-turunan virus influenza
tipe A dari manusia maupun dari burung dan dalam hal ini dianggap sebagai inang
sementara (Intermediate hosts) dari turunan-turunan virus flu babi yang berpotensi
menyebabkan epidemi bahkan pandemi. Evolusi antigenik dari virus influenza
pada babi terjadi dengan laju sekitar 6 kali lebih lambat dibandingkan dengan
virus influenza pada manusia. Dalam tulisan ini akan dikaji model matematika
untuk epidemi flu babi pada populasi babi. Model yang diberikan merupakan
model deterministik dengan laju kontak jenuh yang merupakan perumuman dari
laju kontak standar. Perumuman ini dinyatakan dengan adanya probabilitas suatu
individu melakukan kontak yang dinyatakan sebagai suatu fungsi dari populasi.
Pengkajian yang dilakukan meliputi penentuan titik ekuilibrium model matematika
dan analisa kestabilannya. Diharapkan hasil kajian ini dapat bermanfaat dalam
penanggulangan wabah flu babi pada sumber utama yaitu populasi babi sehingga
dapat dilakukan pencegahan sebelum mewabah di populasi manusia.

Abstract

Pigs are a natural host of influenza virus that are similar anatomically, physiologically,
and immunity which in humans. Influenza viruses of A subtype in humans are HIN1,
H3NZ2 and HIN2. They are enzootic in the swine population in the world. Pigs can be
infected by strains of type A influenza viruses from humans or from birds. Pigs are
considered as a temporary host (intermediate hosts) of the derivatives of the swine
flu virus that has the potential to cause epidemics and even pandemics. Antigenic
evolution of influenza viruses in pigs occurred at rate about 6 times slower than the
influenza viruses in humans. In this paper the mathematical model will be assessed
for swine flu epidemic in pig populations. The model provided a deterministic model
with saturated contact rate which is a generalization of the standard contact rate.
This generalization is expressed by the probability of an individual contact that is
expressed as a function of population. In this paper, it will be analyzed the equilibrium
point of mathematical models and their stability.
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Pendahuluan

Dalam Fraser et al. (2009) disebutkan
bahwa pada 29 April 2009 WHO mengumumkan
laju penyebaran secara global dari strain virus
influenza A (H1N1) yang terdeteksi pada
minggu sebelumnya meningkatkan level tanda
global pandemic sampai ke level 5. Level 5
mengindikasikan transmisi antar manusia yang
terjadi terus-menerus. Dalam Fitzgerald (2009)
disebutkan bahwa pada sekitar 15 April sampai
5 Mei 2009, virus influenza telah menyebar
dengan cepat dari Meksiko ke 41 negara di
Amerika serikat dan menyebabkan 642 kasus
di Amerika serikat. Virus tersebut mencapai
Kanada dan Eropa pada waktu yang bersamaan
dan pada 27 Mei 2009 telah mencapai 46 negara
dengan 92 kasus kematian [80 di Meksiko dan
10 di AS]. Dalam Fitzgerald (2009) dan Fraser et
al. (2009) disebutkan bahwa Penyebaran virus
influenza dalam epidemi melibatkan orang yang
sering melakukan perjalanan ke berbagai daerah
yang terkena wabah.

Babi merupakan inang alami dari virus
influensa yang secara anatomis, fisiologis, dan
imunitas mirip (similar) dengan yang ada pada
manusia. Virus influenza subtipe A yang ada
pada manusia yaitu HIN1, H3N2 dan H1N2
merupakan enzootic pada populasi babi di dunia
(Van Reeth et al. 2009). Dalam Belshe (2009)
disebutkan bahwa virus flu babi telah ada
beredar dalam populasi babi selama lebih dari
satu decade. Dalam Brown (2000) dan Fitzgerald
(2009) disebutkan bahwa babi dapat terinfeksi
oleh turunan-turunan virus influenza tipe A dari
manusia maupun dari burung dan dalam hal ini
dianggap sebagai inang sementara (Intermediate
hosts) dari turunan-turunan virus flu babi yang
berpotensi menyebabkan epidemi bahkan
pandemi. Fitzgerald (2009) juga menyebutkan
bahwa evolusi antigenik dari virus influenza
pada babi terjadi dengan laju sekitar 6 kali lebih
lambat dibandingkan dengan virus influenza
pada manusia.

Dalam tulisan ini akan dikaji model yang
sama tetapi kontak yang terjadi diperumum
yaitu dengan menambahkan probabilitas suatu
individu melakukan kontak yang dinyatakan
sebagai suatu fungsi dari populasi ke dalam
model tersebut. Selanjutnya akan dilihat
perubahan terhadap nilai dan kestabilan titik
ekuilibriumnya. Dalam Diekmann & Heesterbeck
(2000) didefinisikan sebagai laju terjadinya
infeksi sekunder yang disebabkan oleh infeksi
primer tunggal dalam suatu populasi yang rentan
secara keseluruhan.
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Hasil dan Pembahasan

Beberapa fakta terkait dengan epidemi flu
babi pada populasi babi dirujuk dari beberapa
sumber. Dalam Syafriati (2005) disebutkan
bahwa infeksi virus influensa babi dapat dengan
cepat menyebar pada sekelompok ternak babi
dan dengan cepat pula sembuh. Penyakit ini
menyebar sangat cepat hampir 100% babi yang
rentan terkena. Biasanya sembuh secara tiba-
tiba pada hari ke 5-7 setelah gejala klinis. Pada
saat terjadi wabah, dilaporkan adanya kenaikan
kematian anak babi, fertilitas menurun, terjadi
abortus pada kebuntingan tua yang dapat diikuti
wabah penyakit pada kelompok ternak yang
tidak kebal. Penyebaran virus influensa dari babi
ke babi dapat melalui kontak moncong babij,
melalui udara atau droplet. Masa inkubasi sering
berkisar antara 1-2 hari, tetapi bisa 2-7 hari
dengan rata-rata 4 hari. Terjadi tingkat kematian
tinggi pada anak anak babi yang dilahirkan dari
induk babi yang tidak kebal dan terinfeksi pada
waktu beberapa hari setelah dilahirkan. Anak-
anak babi yang lahir dari induk yang terinfeksi
pada saat bunting, akan terkena penyakit pada
umur 2-5 hari setelah dilahirkan, sedangkan
induk tetap memperlihatkan gejala klinis yang
parah. Dalam Brown (2000) dan Fitzgerald
(2009) disebutkan bahwa babi dapat terinfeksi
oleh turunan-turunan virus influenza tipe A dari
manusia maupun dari burung dan dalam hal ini
dianggap sebagai inang sementara (Intermediate
hosts) dari turunan-turunan virus flu babi yang
berpotensi menyebabkan epidemi bahkan
pandemi. Fitzgerald (2009) juga menyebutkan
bahwa evolusi antigenik dari virus influenza
pada babi terjadi dengan laju sekitar 6 kali lebih
lambat dibandingkan dengan virus influenza
pada manusia.

Model SEIR merupakan suatu model
matematika untuk wabah penyakit yang
mempunyai masa laten. Masa laten dalam
Diekmann & Heesterbeck (2000) didefinisikan
sebagai masa suatu individu telah terinfeksi oleh
penyakit tetapi individu tersebut belum dapat
menularkan penyakit kepada individu yang
lain. Model matematika untuk kasus epidemi flu
babi pada populasi babi menggunakan model
epidemi SEIR dikarenakan masa inkubasi dan
masa infeksi yang hampir sama lamanya yaitu
masa inkubasi rata-rata 4 hari dan masa infeksi
rata-rata 6 hari (Syafriati 2005).

Penyebaran suatu penyakit dipengaruhi
oleh jumlah kasus baru tiap satuan waktu.
Penyebaran ini berperan penting dalam
mempelajari matematika epidemiologi. Bentuk
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Gambar 1 . Diagram transfer epidemi flu babi pada populasi babi

Tabel 1. Daftar variabel-variabel dalam model matematika

Variabel Arti

N(t) : Ukuran populasi total saat

S(t) : Ukuran subpopulasi yang rentan terhadap infeksi virus saat
E(t) : Ukuran subpopulasi laten saat

I(t) : Ukuran subpopulasi terinfeksi saat

R(t) : Ukuran subpopulasi yang sembuh saat

Tabel 2. Daftar parameter-parameter dalam model matematika

Parameter Arti

A :laju rekruitmen
1 : laju kematian alami
§
satuan waktu
SO
Y, : laju kesembuhan
a, : laju kematian karena infeksi

: probabilitas penularan penyakit di antara 2 individu yang melakukan kontak per

:laju individu laten menjadi terinfeksi Ukuran subpopulasi laten saat

umum dari penularan penyakit yang tergantung

5

dari ukuran populasi dituliskan pCn I dengan
S dan [ berturut-turut menyatakan jumlah
individu yang suspectible dan Infected saat waktu
t. B. probabilitas penularan penyakit di antara
dua individu yang melakukan kontak per satuan
waktu, dan C(N) probabilitas dari suatu individu
melakukan kontak tersebut (Thieme & Castillo-
Chavez dalam Zhang & Ma 2003). C(N) biasanya
disebut laju kontak. BC(N) adalah jumlah rata-
rata kontak yang terpenuhi dari suatu individu
tiap satuan waktu atau disebut juga laju kontak
jenuh.

Heesterbeek dan Metz dalam Zhang & Ma
(2003) menurunkan rumus laju kontak jenuh
dalam populasi yang bermacam-macam sebagai
berikut
CN) = —"—
1+bN+V1+2bN

(1)

dengan b adalah suatu konstanta positif
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yang menyatakan laju kontak jenuh dari
hubungan-hubungan perseorangan yang terjadi
secara acak dalam sebuah populasi.

Jelas
. . bN .
glvlr_rg] C(N) = %}ﬁm =0= k‘l_obNdan
lim C(N) = lim by = lim b =1.
N N-»1+bN++1+2bN ~N-01

+h+ |42
N N

Jadi untuk nilai N yang kecil, ¢(n)~ p dan untuk
nilai N yang besar, C(N)~1 - Dalam tulisan ini
akan dikaji tentang model epidemi SEIR dengan
rata-rata kontak jenuh C(N) yang didefinisikan
pada persamaan (1) dengan struktur populasi
menggunakan rekruitmen dan kematian.
Asumsi-asumsi yang berlaku dalam
pembentukan model ini meliputi: (1) Ilaju
rekruitmen konstan dan masuk ke kelas S, (2)
laju kematian alami proporsional terhadap
jumlah populasi (kematian alami terjadi di setiap
kelas), (3) terjadi kematian karena penyakit, (4)

N
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tidak ada proses karantina dan vaksinasi, (5)
individu akan kebal setelah sembuh, (6) individu
yang laten (pada StageE) tidak bisa menularkan
penyakit, (7) setiap individu yang terinveksi
selalu melewati masa laten, (8) individu yang
lahir dari induk yang sakit lebih rentan dari pada
individu yang lahir dari induk yang sehat dan
infeksi karena virus ini bukan penyakit turunan,
(9) anak yang terinfeksi tidak dibedakan laju
kesembuhannya dengan dewasa, dan (10)
rentang waktu terjadinya epidemi lagi lebih lama
dari pada rata-rata masa hidup babi sehingga
babi yang telah sembuh tidak akan menghadapi
epidemi lagi. Hal ini berakibat kekebalan yang
diperoleh tidak bersifat sementara. Diagram
transfer model epidemi ini diberikan pada
Gambar 1.

Definisi variabel-variabel dan parameter-
parameternya diberikan pada Tabel 1 dan Tabel
2. Nilai-nilai parameter pada Tabel 2 bernilai
positif.

Model matematika dari diagram transfer
pada Gambar1 diberikan pada sistem (2) berikut.

ds _ E B
- A—BCIN)LI—uS
dE 5
o = BCN) L1 — (g0 + 1)E
dl
= SoE— (ot u+a)l
dR _ _
— — Yol —HR
N=S+E+I+R @
Misalkan (V) =1+ bN ++1+2bN
Jadi “ =5 dan PO i,

Misalkan c =8b, jadi

Jadi sistem (2) ekivalen dengan sistem (3)

berikut:
as _
pdt  p ph(N)

E: Cosf _(1+E_0)E

pdt  ph(N) i

L _p(1+L4%2))

[

pdt  p
dR _Yor_PR
pat  p

N=S+E+I+R

A cySI

£o

(3)
i pit=drc="2¢=2y="0
Misalkan u u u

dan “~ &. Sistem (3) ekivalen dengan sistem (4).
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cSI _
h{N)

—(1+¢)E

s A

drt I

dE ST
dr k(W)

E:eE—U+y+aﬂ
m—}f!—R
\ N=S+E+I+R

dN

(

) (4)
=——N—al
Dari sistem (4) diperoleh 47 H

Jadi sistem (4) ekivalen dengan sistem (5)
berikut.

=2 _N-al
art i
dE _ c(N-E-I-R)I
dar h(N)
Lo eE—(L+y+a)l

drt

—(1+¢€)E

B —yI—R

drt

(5)

Titik ekuilibrium N diperoleh saat

Moo N-al=0eN=2—a
p e ]
A

dr
——ual

Nog =7

Jadi titik ekuilibrium N adalah ? . Saat

I = 0 diperoleh titik ekuilibrium populasi bebas
A

=- Ny = Ny, =2
penyakit adalah s Jadi nilai ¢~ ?

Karena untuk t—oo berlaku
N(D) <N, <

A
8q =

maka domain sistem dapat kita batasi pada
r:{(N,E,J,R)eRi:osE+1+Rst§}

daerah
R4
dengan "'+ menyatakan daerah non negatif di
R*.
Titik Ekuilibrium
Titik  ekuilibrium diperoleh dengan
av a5 al

dR
menjadikan 9t dr’ a7’ dan dr sama dengan
nol sehingga diperoleh sistem (6) berikut

A

-——N-—-al=0

il

c(N-E-I-R)I _

— (1+&)E=0
eEE—-(1+y+a)I=0

YI-R=0 6
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Teorema yang berkaitan dengan eksistensi
titik ekuilibrium diberikan teorema 1.
Teorema 1

R,

Misalkan
w=1+¢g

JikaR <1makasistem (5)hanyamempunyai
satu titik ekuilibrium yaitu titik ekuilibrium
-WELR) = (%,0,0,0)

Aae

Ir.té‘a:rn{ﬂ)
#/ dengan &=1+y+a dan

bebas penyakit Fo
Jika R>1 maka sistem (5) mempunyai

dua titik ekuilibrium yaitu titik ekuilibrium

bebas penyakit P dan titik ekuilibrium endemik

P1=(N*E*I*,R*) dengan

. 1/A . . 6 (A . . A R

! ;&—N)E=;&—N)R=§&—N)dmlN*

penyelesaian dari persamaan

(c— ab)SwN — [C(Sm— sa)ﬁ + a&u] —aben1+2bN =0

Bukti:

A
Dari sistem (6), jika I = 0 diperoleh V=i
dan E = R = 0. Diperoleh titik ekuilibrium bebas

penyakit o = (V.E.LR) = (2,0.00)

Eksistensi dari titik ekuilibrium P tidak
dipengaruhi oleh nilai dari R . Jadi untuk segala
kondisi R, titik ekuilibrium ini pasti ada.

Daripersamaanketigasistem (6) diperoleh
E = (1+a+y) . .

, substitusikan ke persamaan kedua
sistem (6) didapat
¢(N—E—I—-R) =%“’h(N)

£

(7)
Susbstitusikan = persamaan  pertama,
ketiga, dan keempat dari sistem (6) ke

—4_ (%
N-E-I-R diperoleh ¥ ~ 517 %~3 1)

Substitusikan ke persamaan (7) diperoleh
f:ﬂ‘;—l—%h(m

Syarat titik ekuilibrium endemik adalah I > 0.

Jadi
As 1 Aeg 1 Ace
o h[N)<AC£<:)h(A)<ACE<:) - Ace
su — - <—
P pow p) " psw pdwh (%)
I
Ace
RO - udwh (}—1)
Didefinisikan K

Jadi titik ekuilibrium endemik ada saat R >1.
Pencarian titik ekuilibrium endemik hanya
dilakukan saat R >1.

Substitusikan persamaan 6=1+y+a dan w=1+¢
ke sistem (6), kemudian ganti persamaan
kedua dalam sistem (6) dengan persamaan (7),
diperoleh sistem (8) berikut.
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E—sz
ce(N—E—1—R) = dwh(N)
eE = 61
e (8)
Dari sistem (8) diperoleh
—1(4_ =9 (A_ —Y(A_
I= a (Ir.t N)’ E s (Ir.t N) dan R o (Iu N)

Substitusikan ke persamaan kedua dari sistem
(8), diperoleh

c [wﬁN— E (wé— sa)] —adwh(N)=0

Karena h(N)=1+bN+V(1+2bN), maka persamaan
di atas menjadi:

A
c [wﬁN—;(wﬁ— sa)] —aSw(1+bN+~+T+2bN) =0

A
< (c— ab)dwN — [c(&of sa)ﬁ - a&u] —adw1+2bN =0

o F[of]-R
Didefinisikan H dengan
F(N)=(c—ab)éwN — [c(&u — sajf + a&o] —adw\/1+ 2bN

Jelas
R = Acs Acs _ Acs
0= 7yt — = —
#5@?1(;} #Sm(1+bf+““ll+2bﬂ (Ltaty)(1+e) (u+b.4+.u“‘|1+25§)
Karena
0< ashA < (1+a+y)(1+£)(y+bA+y 1+2b;—1
berakibat
1 1
= ZebA
(l+a+Pd+e (p+bA+,uJ1+2b:#) @
Jadi
Ry = Ace o AE _
ashA ab

(1+a+y)(1+) (Iu+bA+lu |‘1+2bi)
+ "

Karena R, >1, maka a-ab>0.

]elas F(O)=—[c[6w—sa)§+a6w]—a6w<0 d

A A A A
F(f)=(cfab)szff[C(ﬂwfea)era:iw]faﬁw 1+2b—
e ©“ ©“ K
A A A A A
=cea——abw|1+b—+ [1+2b— :csa——a&uh(—)
I3 M “ n H
ceaA

A A A
= a&uh(f)iﬁlf a&uh(f) = aﬁa)h(f)
M yaﬁa)h(;) e M

Karena R >1, maka F(£) = adon(3)Re-1 >0,
Jelas F terdiferensiabel tingkat pertama

an

cead

A 4
‘umiwh(f)

= aﬂwh(u) (R,—1)

pada [o3] sehingga F Kkontinu pada ["'ﬂ, karena

F(0)<0 dan #()>° maka berdasarkan teorema
nilai antara (Bartle & Shebert 1994), ada paling

sedikit satu <[] sehingga F(N*)=0.

Ditunjukkan * <2 tersebut tunggal.

Jelas

% = % [(c— ah)SwN — [c(ﬁm — sa)i+ aﬁm] —adw1+ ZbN]
adwb ab

= (c—ab)éw— \m: dw [(c— ab) — ﬁ]
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Jadi
Y <0 o 80— ab) — 2] < 0 & (c—ab) <
ab (ab)? (ab)? c(2ab—c)
‘:)0<\1+2bN<c7ab©l+2bN<m@2bN< c—ab)? 11:)N<2b(€7'1b)2
Dengan cara serupa diperoleh
dF(N) >0 N> c(2ab—c)
aN 2b(c—ab)?
c{2ab—c)
Jadi grafik F turun saat w(e-an)® dan naik saat
N > c(2ab—c)
2b(c—ab)?
c(2ab—c) 4
Jelas ‘zew? " x karena Kkalau tidak maka

kontradiksi dengan “()>°
Karena F(0)<0 dan grafik F monoton turun

c(2ab—c)
saat wle-a)?  maka untuk setiap nilai-
.. Ne [0 c(erb fj .
nilai ‘2e-ab)?l, F(N)#0. Karena grafik F
c(2ab—c)
monoton naik saat 2p(c-ar)® dan untuk setiap

c(2ab—c)
2b(c-ab)?

e(2ab—c) 4
€ (zn(: ab)?’

Nefo el , F(N)#0., maka " ) , dengan

F(N*)=0 dan N* tersebut tunggal. Ketunggalan
N* dijamin oleh kemonotonan grafik F.

Jadi dapat disimpulkan untuk R >1, terdapat
dengan tunggal titik ekuilibrium endemik
P =(N*E*I*R*)

G

"
dengan

N* penyelesaian dari persamaan

i(c— ab)béwN — lc(c?w — sa)f+ ac?wJ —aduf1+2bN=20

¥

E* — (f,
=

-=(-)

)’

)

)’

= R* N*

, dan

Kestabilan Titik Ekuilibrium

Ditunjukkan CM) = v , fungsi yang tidak
turun
Jelas
bN )
de(Ny _ AN pNeviroon _ b
dN daN (14BN +V1+2bN W1+2BN
dc(N) A
>0VN e |0,
Karenab >0 maka a~ [ ’#]
Nl
Jadi C(N) tidak turun, berarti untuk setiap — *#
ciN)
osc(M=C 0=—m=1
berlaku () ( ) berakibat <)
Teorema 2
Ry = aiis(f)
Misalkan HOOT dengan 6=1+y+a dan
w=1+¢

Jika R,<1 maka titik ekuilibrium bebas

A
Po=(N.ELR) = (#’0’ 0 0) penyakit stabil

asimtotik lokal.

Jika R >1 maka titik ekuilibrium bebas penyakit
P, tidak stabil dan titik ekuilibrium endemik
P_stabil asimtotik lokal.
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Bukti:
Jelas matriks jacobian dari sistem (5) adalah se-
bagai berikut.

1 0 — 0
A _14e c(N-E—-R—-2I) —c
JELR) =| P h(W) ) "N
0 € —(l+a+y) O
0 0 % -1
-1 0 —
—d _ c(N—E-R-2I) —c
=7 mw h(N) )
0 £ — 0
0 0 y -1
. cI cbI (E+I+R) (1 1 )
dengan pP= h(N)W1+2BN hZ(N) Vit2bN
[B1] Untuk P, matrik jacobiannya adalah
-1 0 -& 0 10 -a 0
C; 0 w 704
A 0 —w —¢ 0 - 4
](5,0,0.0) = h(ﬁ) = ,uh(ﬂ)
0 ¢ -6 0 0 e 6 0
00 ¥ -1 oo ¥ -1

Karena hanya ada satu nilai tak nol pada
kolom pertama dan keempat, dan keduanya
bernilai negatif, maka kita dapat memeriksa
apakah nilai-nilai eigen dari matriks 1(5’0’0’0)
mempunyai bagian real negatif dengan
memeriksa matriks 2 x 2 yang merupakan blok

(£.000)
dari matriks 7\:%%%) (Anton 1991). Matriks 2
X 2 tersebut adalah

cA

A
uh(3)

3 -

Jelas tr(],, )=-(w+6)<0 dan

Jo1 =

ced

det = 0w — i —
UOl) 6wluh(i)

=8w(l—Ry)

e
KRG
Jadi det(],,

Jadi nilai eigen matriks 1(2.000) semuanya
mempunyai bagian real negatif saat R,<1 dan ada

)>0 dipenuhi saat R <1.

minimal satu nilai eigen matriks 1(5.000) yang
mempunyai bagian real positif saat R >1

Jadi titik ekuilibrium P stabil asimtotik lokal
saat R <1 dan tidak stabil saat R >1.

[B2] Dibuktikan untuk R >1, titik ekuilibrium en-
demik P, stabil asimtotik lokal

Matrik Jacobian titik P, adalah

-1 0 - 0
. c(N*—E*—R*-2I") —cI”
JrEL R = P R h(N) RN
0 £ —& 0
0 0 ¥ -1
—1 0 0
- c(N* — R* 2{) cl* —cI”
=P my ¢ h(N) TRNT RN
0 £ - 0
0 0 ¥ -1
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Berdasarkan persamaan (7) diperoleh

-1 0 —a 0
R dw oI —cI”
Jar LR =[P R T Y e TR AV
0 3 -8 0
0 0 ¥ -1
dengan
. _ cl* cbf*(E*+f*+R*)(1 1 )
p h(N*W1+2bN® hZ[N*) V1+2bN*
cl* 2chbI'(E*+ 1"+ R")
SR R@Y
< cl” N 2cl* bN*
~ h(N*)  h(N*)h(N*)
< 3cl”
~ h(N*)

Dicari persamaan karakteristik J(N* E*,I*,R*)=]*:
Misalkan J(N*E*I* R*)=]*.

Jelas
A+1 0 a 0
+ el* el* _ 57&; —cl*
det(I —J) =0 P A+ R(N") RN & RV [ =0
—& A+é 0
0 0 - A+1

Persamaan Kkarakteristik untuk J(N*E*I* R*)=]*
adalah

cr*
s+ 1)((/1+ 1)(

ey +1) B
h(N‘)) B

h(N™)

cI* dw 2 2046 (2
h(N‘)*T)‘Fap +@A+1*A+ )( +o+
I 5 I
£((l+l)(%mem)Jrap)Jr(/1+1)(A+6)(/1+w+%m)

<:>(A+l):0VIMES((JJrD(%I[\;)f%)Jrap)Jr(Z+1)(l+6)(l+m+ °

ecy

<A+ —m

=0

=0
Jelas persamaan A+1=0 menghasilkan nilai eigen
A=-1<0.

Jadi akan diperiksa persamaan karakteristik

3 cl” Sw 3 S cl” &y
| G +1)(m—?)+a:p +@A+1A+ )( +m+m)—m70
eB+al+ai+az=0
dengan
-5 1+ 10— 1+ ]s0a
a,=(6+w)+ +h(N*) > 0,8, = (6+w)+ +h(N*) > 0,dan
AP S S
agih(N*) gy +&) +asp
Jelas
n1n2—332(5+m)2{1+%1\;<)}+(5+m)[1+%] —%as—#j\;)(d+ 5¥+ é,‘)

= (5+ m)’ + (5+ m){lvl(%**)} +%}\;)[(5+ a))’ —Bas-S-ey- s]
E (5+ mf +(5+ w){lJr%N*ﬂT +hz%**)(45m73msfé‘f 2y — E)

er*

p (N*)(ww— 202) 20.

:(J+w)7+(5+w){l+%l\;ﬂ)}
Jadi berdasarkan kriteria Routh-Hurwitz (Ol-
sder 1994) titik ekuilibrium endemik P, stabil

asimtotik lokal saat R >1.

90

Penutup

Dari pembahasan di atas diperoleh
beberapa kesimpulan yaitu saat wabah epidemi
flu babi akan hilang dengan jumlah orang yang
terinfeksi pada awalnya tidak dibatasi dan
saat dengan kondisi tertentu epidemi flu babi
tidak hilang dalam artian masih ada orang yang
terinfeksi. Saran yang dapat diberikan adalah
adanya penelitian lanjutan yang berkaitannya
dengan wabah yang terjadi pada populasi
manusia.
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