OPTIMASI PENEMPATAN VISCOUS DAMPER PADA GEDUNG 10 LANTAI DENGAN SISTEM FOLDED CANTILEVER SHEAR STRUCTURE

NASKAH PUBLIKASI

TEKNIK SIPIL

Diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Teknik

RIANDY HALIM NIM. 145060100111005

UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL MALANG 2017

OPTIMASI PENEMPATAN VISCOUS DAMPER PADA GEDUNG 10 LANTAI DENGAN SISTEM FOLDED CANTILEVER SHEAR STRUCTURE

Riandy Halim, Ming Narto Wijaya, Ari Wibowo Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Jalan Mayjen Haryono 167 Malang 65145 -Telp (0341) 567886 Email : halimriandy@gmail.com

ABSTRAK

Pada jaman sekarang ini, gempa merupakan masalah yang sering menjadi perhatian, terutama di Indonesia karena Indonesia dilewati oleh ring of fire yang merupakan gugusan gunung berapi yang masih aktif. Ada beberapa sistem struktur yang sudah dikembangkan pada jaman ini yang ditujukan untuk meredam atau memperkuat struktur, sehingga mampu bertahan ketika terjadi gempa. Salah satu contoh sistem struktur yang sudah dikembangkan adalah sistem folded cantilever shear structure (FCSS). Sistem FCSS menggunakan sistem fixed-moveable-fixed untuk tumpuan portal-portalnya dan juga menggunakan viscous damper untuk menambah redaman terhadap gaya gempa yang terjadi. Pada sisi moveable digunakan sistem base isolation pada tumpuannya, sedangakan pada sisi fixed digunakan tumpuan jepit. Dari hasil penelitian didapatkan bahwa, dengan karakteristik gempa yang berbeda, akan dihasilkan model optimasi yang berbeda, baik dari jumlah damper yang akan diletakkan dan juga letak perletakkan damper sendiri. Jumlah dan lokasi penempatan dari damper juga akan mempengaruhi periode natural dari struktur bangunan, meskipun dengan jumlah damper yang sama, bila perletakkan damper berbeda, maka akan didapatkan kekakuan struktur yang berbeda. Hasil dari optimasi juga didapatkan bahwa, tidak diperlukan pemasangan damper secara menyeluruh kepada struktur gedung agar struktur gedung tersebut dapat bertahan menghadapi gaya gempa yang terjadi. Bila jumlah pemasangan damper dapat dikurangi, maka struktur gedung akan menjadi lebih efisien.

Kata Kunci: Gempa, Damper, Base Isolation, Folded Cantilever Shear Structure(FCSS).

PENDAHULUAN

Gempa bumi Pada jaman sekarang ini merupakan masalah yang sering menjadi perhatian, terutama di Indonesia dikarenakan Indonesia sendiri dikelilingi oleh ring of fire yang merupakan gugusan gunung berapi yang masih aktif sehingga sering mengakibatkan terjadinya gempa. Seperti contohnya adalah gempa Aceh pada tahun 2004, gempa di Jogja tahun 2006 dan yang paling baru ini adalah gempa Aceh pada bulan Desember tahun 2016. Maka dari itu, di Indonesia penelitian terhadap sistem struktur bangunan yang tahan gempa perlu dikembangkan lebih jauh.

Gempa sendiri terbagi menjadi dua bila diklasifikasikan berdasarkan asal terjadinya, yaitu gempa vulkanik dan gempa tektonik. Gempa vulkanik sendiri terjadi akbiat dari aktifitas gunung berapi, sedangkan gempa tektonik terjadi akibat dari pergeseran dari lempeng–lempeng bumi. Indonesia berada di antara jajaran gunung berapi yang biasa disebut ring of fire dan juga tempat terjadinya pertemuan lempeng Eurasia dan lempeng Australia. Hal inilah yang menyebabkan di Indonesia sering terjadi gempa. Beban gempa sendiri tidak memiliki bentuk visual yang bisa dilihat. Beban gempa bekerja pada struktur dengan cara memberikan pergerakan pada dasar bangunan, sehingga bagian struktur vang lainnya pada bangunan ikut terpengaruh akibat gempa tersebut. Besarnya beban gempa yang bekerja pada suatu bangunan juga dipengaruhi oleh berat dari bangunan itu sendiri, semakin besar berat bangunan tersebut, maka makin besar juga gaya gempa yang bekerja pada bangunan itu.

Berdasarkan penelitian-penelitian yang telah dilakukan sebelumnya, banyak penemuan yang telah diciptakan guna memperkuat struktur bangunan dalam menghadapi bencana gempa bumi. Beberapa contoh perkuatan dan sistem yang ditemukan dalam upaya untuk menghadapi gempa adalah penggunaan sistem base isolation, penggunaan damper, penggunaan sistem outrigger, dan yang akan dibahas pada penelitian ini yaitu sistem Folded Cantilever Shear Structure (FCSS) yang merupakan suatu sistem struktur yang menerapkan gabungan antara penggunaan damper dan base isolation.

Sistem base isolation merupakan sistem yang mengisolasikan struktur bagian atas bangunan, dengan permukaan dasar yang bergerak. Hal ini dapat menyebabkan percepatan yang terjadi pada dasar permukaan dengan percepatan yang terjadi pada sistem bangunan berbeda. Dengan digunakannya sistem base isolation pada bangunan, diharapkan sistem ini dapat mengurangi percepatan bangunan akibat dari percepatan gempa yang terjadi. Hal ini dikarenakan sistem base isolation dapat meningkatkan periode natural dari bangunan sehingga menyebabkan bertambahnya besar dari deformasi absolute pada bangunan. Peningkatan deformasi

yang terjadi pada gedung tersebut akibat dari penggunaan sistem base isolation dapat diatasi dengan meningkatkan damping ratio dari gedung tersebut. Salah satu cara yang dapat meningkatkan damping ratio dari sistem struktur bangunan adalah dengan dipasangkannya damper. Hal ini dikarenakan fungsi damper sendiri, yaitu sebagai peredam gaya gempa pada sistem bangunan tersebut.

Sistem FCSS sendiri merupakan sistem dimana digunakan gabungan antara sistem base isolation untuk mengurangi respon percepatan gedung akibat dari gaya gempa dan digunakan damper untuk mengantisipasi peningkatan deformasi akibat penggunaan sistem base isolation. Dalam penelitian ini jenis base isolation yang digunakan adalah friction pendulum dan damper yang digunakan adalah viscous Dalam sistem FCSS damper damper. diletakkan pada posisi tegak lurus terhadap sumbu vertical bangunan dan dipasang sebagai penghubung antar lantai pada bangunan tersebut. Dalam penelitian ini, akan dibahas dilantai berapakah diperlukan pemasangan damper pada gedung dengan sistem FCSS sehingga didapat performa optimal dari struktur bangunan.

METODE PENELITIAN

pertama dalam Tahap analisis tentang optimasi perletakan gedung ini adalah menggambar struktur model FCSS dengan tanpa pemberian damper, lalu membukanya pada program SAP2000 untuk dianalisis selanjutnya. Setelah memindahkan model struktur FCSS tanpa damper pada program SAP2000, masukkan parameter-parameter yang ada, dan material yang digunakan, serta masukkan profil penampang yang digunakan. Setelah itu, masukkan pembebanan pada tiap join, sesuai dengan pembebanan yang telah dihitung sebelumnya. Setelah selesai memasukkan

pembebanan, masukkan data gempa yang akan dianalisis.

Prosedur analisis optimasi damper pada penelitian kali ini adalah dengan melakukan melakukan pemasangan damper pada lantai - lantai yang terdapat sendi plastis. Pertama - tama, analisis struktur gedung yang tidak diberikan penambahan damper, lalu cek kondisi akhir gedung, apakah ada terjadi kemunculan sendi plastis pada struktur gedung atau tidak terjadi kemunculan sendi plastis. Jika tidak terjadi kemunculan sendi plastis maka tidak perlu dilakukan optimasi pada gedung, namun jika terdapat sendi plastis pada kondisi akhir bangunan, cari letak kemunculan sendi plastis yang pertama kali terjadi pada struktur. Setelah diketahui letak kemunculan sendi plastis pertama, lakukan pemasangan damper pada lantai tersebut dan lakukan analisis ulang. Setelah dilakukan analisis ulang, lakukan pengecekan kembali terhadap kondisi akhir struktur gedung, jika terjadi kemunculan sendi plastis lakukan optimasi kembali dan pengecekan kembali terhadap kemunculan sendi plastis pertama, dan lakukan tahap optimasi kembali, namun jika tidak terjadi kemunculan sendi plastis pada struktur gedung, optimasi dihentikan.

diberi perletakan Lantai yang damper disimbolkan dengan "1", dan "0" bila pada lantai tersebut tidak dipasangi damper. Hasil dari penempatan damper pada struktur akan ditunjukkan dalam matriks. Setelah sudah diperoleh model struktur yang paling optimal untuk kasus tiap gempa, langkah berikutnya yang diambil adalah mencari besar nilai drift story. Besar nilai drift story untuk tiap lantai dihitung menggunakan rumus yang sudah dijelaskan pada bab dua. Setelah diperoleh besar nilai drift story untuk tiap lantai, lakukan pengecekan antara besar nilai drift story pada bangunan dengan nilai dari drift story ijin gedung.

penelitian lainnya yang Hasil diperoleh pada penelitian ini adalah nilai performance point dari model struktur Nilai ini bisa kita dapatkan bangunan. dengan melakukan analisis pushover pada model struktur. Respon spektrum yang digunakan pada analisis performa ini adalah respon spektrum untuk daerah Malang, dengan tanah sedang. Peraturan yang digunakan untuk mencari performance point untuktiap model bangunan adalah FEMA 440. Setelah diketahui berapa besar nilai performance point untuk model bangunan, dicari termasuk dalam golongan manakah performa untuk tiap model struktur gedung.

HASIL PENELITIAN

Pada penelitian kali ini, digunakan tiga kasus gempa. Kasus gempa yang digunakan adalah El Centro, Taft, Hachinohe, dan Sumatra. Tiap kasus gempa tersebut memiliki percepatan pada dua arah, yaitu arah East – West (EW) dan arah North-South (NS). Jadi data gempa yang akan digunakan adalah ke empat kasus gempa yang sudah disebutkan sebelumnya, dan digunakan kedua arahnya tersebut. Data gempa tersebut akan diolah dan diskalakan sampai nilai percepatan maksimum untuk kasus gempanya sebesar 300 gal.

Perletekan dan Penempatan Lokasi Damper

Pada kasus gempa El Centro, dilakukan optimasi menggunakan data gempa arah East-West (EW). Hal ini dikarenakan pada arah North-South (NS), sendi plastis tidak muncul meski bangunan tidak diberikan pemasangan damper. Jadi pada kasus gempa El Centro ini, optimasi hanya dilakukan pada satu arah gempa saja. Pada kasus gempa El Centro ini jumlah damper yang dibutuhkan agar tidak terjadi kemuncul sendi plastis pada struktur gedung adalah tiga damper.

Optimasi penempatan pertama dilakukan pada lantai 5, dikarenakan munculnya sendi

plastis di lantai 5 pada detik ke 2,24 seperti yang ditunjukkan pada gambar 2. Lalu kemunculan sendi plastis berikutnya setelah dilakukan optimasi pada lantai ke lima, terjadi pada lantai 8, dikarenakan munculnya sendi plastis di lantai 8 pada detik ke 3,14 yang ditunjukkan pada gambar 4. Lalu setelah dilakukan pemasangan damper lagi pada lantai ke 8, sendi plastis berikutnya muncul di lantai ke dua pada detik ke 2,68 seperti yang ditunjukkan pada gambar 6. Setelah dilakukan pemasangan damper pada lantai ke dua, sendi plastis tidak muncul lagi pada struktur gedung seperti yang ditunjukkan pada gambar 7. Jadi diperlukan pemasangan tiga damper pada struktur gedung, akibat gempa El Centro arah EW pada lantai 5,8, dan 2.

Gambar 1 Kondisi akhir struktur gedung akibat gempa El Centro EW

Gambar 2 Kemunculan pertama sendi plastis pada struktur gedung akibat gempa El Centro EW

Gambar 3 Kondisi akhir struktur gedung dengan penambahan satu *damper* akibat gempa El Centro EW

Gambar 4 Kemunculan pertama sendi plastis pada struktur gedung dengan penambahan satu *damper* akibat gempa El Centro EW

Gambar 5 Kondisi akhir struktur gedung dengan penambahan dua *damper* akibat gempa El Centro EW

Gambar 6 Kemunculan pertama sendi plastis pada struktur gedung dengan penambahan dua *damper* akibat gempa El Centro EW

Gambar 7 Kondisi akhir struktur gedung dengan penambahan tiga *damper* akibat gempa El Centro EW

Matriks penempatan *damper* dari optimasi yang dilakukan untuk gempa El Centro arah EW diperoleh sebagai berikut

Lantai	1	2	3	4	5	6	7	8	9	10
Damper	0	1	0	0	1	0	0	1	0	0

Dari hasil penelitian yang dilakukan, didapatkan bagaimana konfigurasi damper yang paling optimal untuk setiap kasus gempa. Pada kasus gempa El Centro, optimasi dilakukan pada kasus gempa El Centro pada arah East - West saja, dikarenakan pada arah Nort - South tidak diperlukan dilakukannya pemasangan damper. Penempatan damper pada kasus gempa El Centro EW diletakkan pada lantai 2,6 dan 8. Untuk kasus gempa Taft, optimasi juga hanya dilakukan pada terhadap satu arah gempa saja, yaitu arah East - West. Penempatan damper yang dibutuhkan pada struktur gedung hanya satu buah damper, dan diletakkan pada lantai enam. Pada kasus gempa Hachinohe, optimasi dilakukan pada dua arah gempa, dan dibutuhkan sebanyak tiga buah damper untuk arah East-West dan satu

buah damper pada arah North - South. Pada kasus gempa Sumatra, optimasi dilakukan terhadap kedua arah gempa dengan jumlah damper yang dibutuhkan sebanyak satu buah damper pada lantai enam untuk arah East – West, sedangkan pada arah North – South dibutuhkan tiga buah damper dan diletakkan pada lantai 2,4, dan 7. Rekap jumlah damper dan lokasi penempatan daripada damper tersebut, ditunjukkan pada tabel 1.

No	Kasus Gempa	Jumlah Damper	Lokasi Damper
1	El Centro	3	2-5-8
2	Taft	1	6
3	Hachinohe EW	3	2-5-8
4	Hachinohe NS	1	2
5	Sumatra EW	1	6
6	Sumatra NS	3	2-4-7

Tabel 1 Perletakan damper

Periode Natural Struktur Gedung Hasil Optimasi Tiap Kasus Gempa

Nilai dari periode natural struktur gedung untuk tiap tiap macam optimasi memiliki nilai yang berbeda-beda. Nilai dari periode natural untuk gedung dengan jumlah damper yang lebih banyak akan lebih kecil daripada nilai periode natural dari struktur gedung yang memiliki damper yang lebih sedikit. Hal ini dikarenakan, semakin banyak jumlah damper yang dipasang, maka bangunan tersebut juga akan menjadi semakin kaku, bila bangunan menjadi semakin kaku, tentu hal ini akan mengakibatkan nilai dari periode natural menjadi lebih kecil. Hal ini menunjukkan bahwa damper memiliki pengaruh pada nilai periode natural dari struktur gedung. Nilai periode natural struktur gedung ketika tidak diberi pemasangan damper diperoleh sebesar 4,65 1/s untuk mode 1 dan sebesar 2,22 1/s untuk mode 2.

Pada kasus gempa El Centro (arah EW), nilai periode natural dari struktur gedung ketika diberi pemasangan satu damper pada lantai lima diperoleh sebesar 3,77 1/s untuk mode satu dan sebesar 2,22 1/s untuk mode dua. Lalu setelah diberi pemasangan damper pada lantai 8, nilai dari periode natural menjadi 3,77 1/s untuk mode satu dan 1,95 1/s untuk mode 2. Setelah dioptimasi lagi, dan diberi pemasangan damper pada lantai dua, nilai dari periode natural menjadi 3,37 1/s untuk mode satu, dan 1,54 1/s untuk mode dua. Pada optimasi terakhir, dilakukan penempatan damper ketiga pada lantai dua, dan diperoleh periode natural sebesar 2,92 1/s untuk mode satu dan sebesar 1,44 1/s untuk mode dua. Rekap nilai periode natural struktur gedung akibat gempa El Centro ditunjukkan pada tabel 2.

Jumlah Damper		f1	f2	T_1	T 2
0	0.020	0.21	0.45	4.65	2.22
1	0.045	0.26	0.51	3.77	1.95
2	0.070	0.30	0.65	3.37	1.54
3	0.095	0.34	0.69	2.92	1.44

Tabel 2 Periode natural struktur gedung akibat gempa El Centro

penelitian Berdasarkan yang sudah dilakukan, didapatkan bahwa periode natural dari struktur akan berubah sesuai penempatan jumlah damper. Pada kasus gempa El Centro, dengan lokasi perletakkan damper yang sudah dijelaskan sebelumnya, didapatkan periode natural sebesar 2,82 s untuk mode satu dan 1,44 s untuk mode dua. Pada kasus gempa Taft, didapatkan periode natural sebesar 3,86 s untuk mode satu dan 1.82 s untuk mode dua. Untuk kasus gempa Hachinohe arah East -West didapatkan periode natural sebesar 2,92 s untuk mode satu dan 1,44 s untuk mode dua, sedangkan untuk arah North - South didapatkan periode natural sebesar 3,97 s pada mode satu dan 2,18 s untuk mode dua. Pada kasus gempa Sumatra, pada arah East – West didapatkan periode natural struktur gedung sebesar 3,86 s dan 1,82 s untuk mode satu dan dua, sedangkan untuk arah North – South diperoleh nilai periode natural mode satu dan dua sebesar 2,91 s dan 1,52 s.

Rekap nilai periode natural struktur gedung akibat gempa tiap kasus gempa ditunjukkan pada tabel 3.

No	Kasus Gempa	Jumlah damper	Periode natural mode-1 pemasangan 1 <i>damper</i>	Periode natural mode-1 pemasangan 2 <i>damper</i>	Periode natural mode-1 pemasangan 3 <i>damper</i>
1	El Centro	3	3.77	3.37	2.92
2	Taft	1	3.86		
3	Hachinohe EW	3	3.97	3.54	2.92
4	Hachinohe NS	1	3.97		
5	Sumatra EW	1	3.86		
6	Sumatra NS	3	3.73	3.23	2.91

Tabel 3 Periode Natural

Respon Bangunan

Pada penelitian kali ini, respon yang diperhatikan dari struktur bangunan adalah respon perpindahan. Respon perpindahan bangunan yang diambil adalah respon perpindahan terbesar yang terjadi pada gedung akibat dari gaya gempa yang diberikan pada gedung. Lalu setelah diperoleh respon perpindahannya, dihitung juga nilai dari drift story tiap lantai pada struktur gedung, dan dibandingkan dengan standart yang ada, sehingga dapat diketahui apakah gedung tersebut memenuhi standar

yang ada atau tidak, dimana nilai batas dari drift story pada gedung diperoleh sebesar 80 mm. Nilai drift story ijin diperoleh dari SNI gempa 2012 dengan spesifikasi gedung dengan kategori resiko 1 dan jenis struktur "semua struktur lainnya", sehingga diperoleh nilai drift story ijin sebesar 0,020 hsx dimana hsx adalah tinggi lantai yaitu sebesar 4m. maka diperolehlah nilai drift story ijin sebesar 80 mm. Contoh respon perpindahan struktur gedung akibat gempa El Centro ditampilkan pada tabel 4 dan gambar 8.

Lantai	Displacement sisi moveable (mm)	Displacement sisi <i>fixed</i> (mm)	Drift story sisi moveable	Drift story sisi fixed	Cek kondisi
1	280	0	-	-	-
2	277	12	13	69	OK
3	274	48	20	193	TIDAK OK
4	269	98	26	278	TIDAK OK
5	268	136	4	211	TIDAK OK
6	270	169	8	180	TIDAK OK
7	273	208	15	213	TIDAK OK
8	276	236	16	155	TIDAK OK
9	277	257	7	113	TIDAK OK
10	280	278	18	117	TIDAK OK
RF	292	293	64	81	TIDAK OK

Tabel 4 Respon perpindahan struktur gedung akibat gempa El Centro

Gambar 8 Drift story akibat gempa El Centro

Dapat disimpulkan dari hasil tersebut, nilai dari drift story struktur gedung tersebut tidak memenuhi nilai standar yang ada. Lantai - lantai yang tidak memenuhi standar pada struktur gedung adalah mulai dari lantai tiga sampai ke atas. Hal ini dikarenakan nilai dari drift story pada lantai – lantai tersebut melebihi nilai ijin dari drift story yang ada (80mm).

Respon bangunan terhadap gempa yang diberikan, ditunjukkan dalam nilai drift story dari struktur bangunan. Pada kasus gempa El Centro, didapatkan bahwa nilai drift story untuk lantai tiga sampai lantai diatasnya tidak memenuhi nilai drift story ijin. Sedangkan untuk kasus gempa Taft,

didapatkan bahwa nilai drift story untuk lantai 2,3,4,5,8 dan 9 tidak memenuhi nilai drift story ijin. Untuk kasus gempa Hachinohe, pada arah East - West didapatkan bahwa nilai drift story untuk lantai tiga sampai 10 tidak memenuhi ijin, dan pada arah North - South nilai dari drift story untuk lantai tiga sampai di atasnya tidak memenuhi drift story ijin. Pada kasus gempa Sumatra, untuk arah East - West didapatkan nilai drift story untuk lantai tiga sampai di atasnya tidak memenuhi drift story ijin, sedangkan pada arah North - South didapatkan nilai drift story untuk lantai dua sampai enam, tidak memenuhi drift story ijin. Rekap hasil dari drift story untuk tiap kasus gempa ditunjukkan pada tabel 5.

No	Kasus Gempa	Jumlah <i>damper</i>	Memenuhi <i>drift story</i> ijin	Lantai ke-
1	El Centro	3	Tidak	3-RF
2	Taft	1	Tidak	2-5 dan 8-9
3	Hachinohe EW	3	Tidak	3-10
4	Hachinohe NS	1	Tidak	3-RF
5	Sumatra EW	1	Tidak	3-RF
6	Sumatra NS	3	Tidak	2-6

Tabel 5 Respon bangunan

Performa Tiap Model Bangunan

ditemukan Setelah model struktur bangunan yang paling optimal untuk masing masing kasus gempa, dilakukan pengecekan performa pada tiap model. Pengecekan performa pada struktur bangunan, dilakukan dengan melakukan analisis push over. Respon spektrum yang digunakan pada penelitian kali ini adalah respon spektrum untuk daerah kota Malang dengan tanah sedang. Sedangkan simpangan ijin yang digunakan adalah sebesar 800 mm. Hasil performa yang akan diperoleh adalah berupa performance point yang merupakan perpotongan antara kurva push over dan kurva respon spektrum. Hal yang akan ditampilkan pada pengecekan performa struktur bangunan di penelitian ini adalah kurva *pushover* dari struktur bangunan, tabel pushover curve demand capacity, dan gambar kondisi struktur bangunan pada step tersebut. Contoh Kurva *Pushover*, tabel *Pushover curve demand capacity*, dan gambar kondisi struktur gedung pada step 1 dan 2 hasil optimasi gempa El Centro ditunjukkan pada gambar 9, 10, 11 dan tabel 6.

Gambar 9 Kurva *pushover* model bangunan akibat gempa El Centro

	TABLE: Pushover Curve Demand Capacity - FEMA440 EL										
LoadCase	Step	SdCapacity	SaCapacity	SdDemand	SaDemand	Teff	Tsecant	Beff	Ductility	Alpha	ModFact
Text	Unitless	mm	Unitless	mm	Unitless	Sec	Sec	Unitless	Unitless	Unitless	Unitless
Push	0	0.000	0.000	89.297	0.445	0.899	0.899	0.050	1.000	0.000	1.000
Push	1	61.781	0.308	89.297	0.445	0.899	0.899	0.050	1.000	0.000	1.000
Push	2	169.400	0.849	89.297	0.445	0.899	0.899	0.050	1.000	0.000	1.000
Push	3	178.476	0.875	89.297	0.445	0.899	0.899	0.050	1.000	1.092	1.000
Push	4	202.363	1.002	89.041	0.441	0.899	0.902	0.050	1.038	0.828	0.994
Push	6	208.921	1.062	89.258	0.444	0.900	0.900	0.050	1.082	0.959	1.000
Push	7	228.681	1.096	87.577	0.420	0.900	0.900	0.050	1.082	0.959	1.000
Push	8	297.799	1.458	140.358	0.687	0.899	0.917	0.050	1.040	-0.010	0.962
Push	9	304.289	1.386	85.824	0.391	1.337	0.907	0.156	2.976	0.973	2.174
Push	10	391.788	1.889	436.811	2.106	0.905	0.940	0.052	1.188	0.454	0.926
Push	11	402.408	1.976	89.297	0.445	2.443	0.914	0.187	15.311	0.965	7.150
Push	12	425.805	2.040	169.666	0.813	0.899	0.899	0.050	1.000	0.993	1.000
Push	13	435.924	1.926	86.097	0.380	1.546	0.917	0.201	4.389	0.950	2.846
Push	14	485.522	2.204	99.698	0.453	0.924	0.954	0.057	1.393	0.597	0.938
Push	15	497.333	2.228	95.456	0.428	1.052	0.942	0.090	2.028	0.824	1.247
Push	16	500.904	2.169	87.790	0.380	1.017	0.948	0.081	1.892	0.785	1.152
Push	17	505.847	2.208	89.613	0.391	0.954	0.964	0.065	1.589	0.646	0.979
Push	18	531.488	2.348	97.342	0.430	0.970	0.960	0.069	1.676	0.691	1.021
Push	19	544.443	2.332	90.040	0.386	1.042	0.955	0.087	1.992	0.771	1.192
Push	20	572.909	2.385	88.332	0.368	0.984	0.970	0.073	1.743	0.670	1.030
Push	21	576.675	2.384	87.664	0.362	0.979	0.983	0.071	1.720	0.606	0.991
Push	22	584.295	2.390	86.941	0.356	0.975	0.987	0.070	1.701	0.586	0.977
Push	23	587.301	2.365	85.285	0.343	0.972	0.992	0.070	1.686	0.559	0.961
Push	24	587.557	2.367	85.341	0.344	0.961	1.000	0.067	1.629	0.502	0.924
Push	25	625.047	2.444	85.396	0.334	0.962	1.000	0.067	1.632	0.504	0.926
Push	26	635.864	2.491	86.823	0.340	0.977	1.015	0.071	1.708	0.480	0.927
Push	27	659.233	2.495	84.726	0.321	0.991	1.014	0.074	1.778	0.511	0.957
Push	28	735.855	2.594	84.030	0.296	0.985	1.031	0.073	1.747	0.437	0.912
Push	29	739.283	2.575	82.974	0.289	1.010	1.069	0.079	1.862	0.368	0.894

 Tabel 6 Pushover curve demand capacity model bangunan akibat gempa El Centro

Gambar 10 Kondisi bangunan hasil optimasi gempa El Centro akibat beban pushover step 1

Gambar 11 Kondisi bangunan hasil optimasi gempa El Centro akibat beban pushover step 2

Dari hasil tersebut bisa kita dapatkan performance point untuk struktur bangunan hasil optimasi dari gempa El Centro. Nilai dari performance point diperoleh sebesar Sa = 0,446 dan Sd = 89,297. Nilai performance point ini berada diantara step 1 dan step 2, seperti yang ditunjukkan pada tabel 4.16 dengan tingkat kinerja B-IO.

Nilai performa untuk tiap model struktur bangunan, didapatkan dengan analisis pushover dengan menggunakan standar FEMA 440. Nilai performa untuk seluruh model bangunan didapatkan termasuk dalam kategori B-IO (Immediate Occupancy), dengan nilai performance point yang berbeda untuk model struktur yang berbeda. Pada model struktur akibat kasus gempa El Centro, Hachinohe arah EW, didapatkan nilai performance point sebesar 0,446 ; 89,297 (Sa ; Sd). Untuk model struktur Taft dan Sumatra arah East - West didapatkan nilai performance point sebesar 0,437 ; 149,575 (Sa ; Sd). Pada kasus gempa Hachinohe arah North – South didapatkan nilai performance point sebesar 0,465 ; 194,361 (Sa ; Sd). Untuk kasus gempa Sumatra arah North – South didaptakan nilai Performance point sebesar 0,461 ; 90,041 (Sa ; Sd). Rekap nilai performa untuk tiap model bangunan ditunjukkan pada tabel 7.

No	V	Jumlah Performance			Kinerja
	Kasus Gempa	damper	Sa	Sd	struktur
1	El Centro	3	0.446	89.297	B-IO
2	Taft	1	1.146	149.575	B-IO
3	Hachinohe EW	3	0.446	89.297	B-IO
4	Hachinohe NS	1	0.465	194.361	B-IO
5	Sumatra EW	1	0.437	149.575	B-IO
6	Sumatra NS	3	0.461	90.041	B-IO

 Tabel 7
 Performa bangunan

KESIMPULAN DAN SARAN

Kesimpulan

Dari hasil penelitian yang dilakukan, didapatkan lokasi perletakan damper maupun jumlah damper yang paling optimal untuk tiap kasus gempa berbeda – beda tergantung karakteristik dari gempa yang terjadi namun diperoleh juga lokasi perletakan damper maupun jumlah damper yang sama pada model struktur meskipun dengan karakteristik gempa yang berbeda. Dengan didapatkannya lokasi perletakan damper yang paling optimal untuk tiap kasus gempa, sehingga bisa dilakukan penghematan dalam pemasangan damper.

Saran

1. Percepatan untuk tiap kasus gempa perlu diskalakan hingga percepatan maksimum dari tiap–tiap kasus gempa sama.

2. Perhatikan parameter damper yang digunakan dan sesuaikan dengan tipe analisis yang dilakukan.

3. Damping ratio perlu dirubah seiring dengan berubahnya kekakuan dari struktur.

4. Desain penampang perlu dilakukan agar efektifitas damper bisa diteliti dengan lebih maksimal.

DAFTAR PUSTAKA

- Chopra, A.K. 1980. *Dynamic of Structure*. New Jersey. Prentice Hall.
- Garcia, D.L. (2001). A Simple Method for the Design of Optimal Damper Configuration in MDOF Structures, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY
- Kokil A.S. & Shrikhande M.(2007). Optimal Placement of Supplemental Dampers in Seismic Design of Structures, Department of Earthquake Engineering, Roorkee, India
- Patil, S.J. & Reddy G.R.(2012). State Of Art Review – Base Isolation System For Structures, International Journal of Emerging Technology and Advanced Engineering, Mumbai, India

- Ribakov Y. et al.(2001). Active Viscous Damping System for Control of MDOF Structures, Earthquake Engineering and Structural Dynamics, Technion City, Israel
- Whittle J.K. et al.(2012). A Comparison of Viscous Damper Placement Methods for Improving Seismic Building Design, Journal of Earthquake Engineering, Oxford, UK
- Wijaya M.N (2012). Seismic Performance of the Folded Cantilever Shear Structure with Fixed – Movable – Fixed Sub-Frames, Kumamoto, Japan
- Wijaya M.N (2013). Earthquake Response of Modified Folded Cantilever Shear Structure with Fixed-Moveable-Fixedsub-Frames, Japan
- Wijaya M.N (2014). Dynamic Analysis of Folded Cantilever Shear Structure and Base Isolated Structure, Japan
- Yu, Yi-Jer et al.(2012). Earthquake Response Analyses of a Full-scale Five-story Steel Frame Equipped With Two Types of Damper, Earthquake Engineering Structural Dynamics, Taipei, Taiwan