Perancangan dan Pembuatan Aplikasi Perbaikan Hardware dan Jaringan Pusat Komputer Universitas Kristen Petra Berbasis Android

Michael Constantine Wijaya¹, Gregorius Satia Budhi², Rolly Intan³ Program Studi Teknik Informatika. Fakultas Teknologi Industri Universitas Kristen Petra

Siwalankerto 121-131, Surabaya

Email : constantine1924@gmail.com¹, greg@petra.ac.id², rintan@petra.ac.id³

ABSTRAK

Sebagian besar pegawai di Pusat Komputer Universitas Kristen Petra juga menggunakan *smartphone* dengan operating sistem Android. Oleh karena itu, aplikasi INV-IT dibuat agar memudahkan para pekerja di Pusat Komputer khususnya bagian *hardware* dan jaringan dalam memasukkan data, dimana sebelumnya proses memasukkan data harus dilakukan dengan menggunakan komputer yang berada di ruang kerja pusat komputer bagian *hardware* dan jaringan.

Setelah dilakukan uji coba, aplikasi INV-IT dapat melakukan *scan barcode* dengan menggunakan kamera *smartphone*, dimana sebelumnya kode barang ditulis secara manual dan juga terdapat *push notification* agar para pekerja yang lain juga bisa mengetahui adanya pekerjaan baru yang dimasukkan.

Kata Kunci

Perbaikan hardware dan jaringan, Barcode, Goggle Cloud Messaging, Android.

ABSTRACT

Some of part-timer workers in Computer Center Petra Christian University uses a smartphone with android operating system. Therefore, application of INV-IT is made to facilitate the workers who works in the Computer Central hardware dan network division especially to inputing data, where previously the process of entering the data should be done using computers that are located in the the Computer Center office.

After conducting trial, INV-IT application can scan the barcode using a smartphone camera, where previously written manual dan this application also send a notification to other users, that allow other workers to know if there is a new job are available.

Keyword

Hardware and network repair, Barcode, Goggle Cloud Messaging, Android.

1. PENDAHULUAN

Pusat Komputer (Puskom) merupakan sebuah divisi yang mengelola infrastruktur teknologi informasi di Universitas Kristen Petra dengan menyediakan berbagai layanan terkait dengan teknologi informasi untuk mendukung kegiatan belajar mengajar dan operasional universitas. Salah satu layanan yang sangat penting adalah layanan perbaikan *hardware* dan jaringan. Selama ini untuk mendata barang-barang yang diperbaiki, Puskom

menggunakan sebuah aplikasi berbasis *web* yang beralamat di http://inv-it.petra.ac.id yang masih digunakan sampai saat ini.

Layanan pemeliharaan infrastruktur Puskom ini terpusat di gedung W lantai 4, sedangkan seringkali perbaikan hardware dan iaringan ini dilakukan di tempat barang yang rusak tersebut berada yang dikenal dengan perbaikan on site. Hal ini menyebabkan sulitnya pencatatan barang yang diperbaiki, jenis kerusakan dan jenis perbaikan yang diberikan karena semua pencatatan tersebut harus dicatat secara manual menggunakan sebuah kertas. Hal ini berimplikasi dengan kurang efisiennya dalam melakukan pendataan terhadap barang-barang yang diperbaiki, sebab data yang telah tercatat di sebuah kertas kemudian dimasukkan ke dalam web perbaikan hardware dan jaringan dengan menggunakan komputer yang berada di ruang hardware dan jaringan di Gedung W lantai 4. Dengan dibuatnya aplikasi perbaikan hardware dan jaringan Pusat Komputer berbasis Android ini maka pencatatan barang yang diperbaiki dapat dilakukan di tempat perbaikan berlangsung sehingga pencatatan bisa dilakukan dengan lebih cepat dan efisien. Selain itu dengan adanya aplikasi yang akan dibuat ini maka ketepatan waktu pemasukan data dapat lebih presisi.

Masalah lain yang juga sering terjadi yaitu pengguna sering lupa mengganti status barang yang sedang dikerjakan. Setiap perbaikan di Puskom diberikan waktu maksimal 2 hari dalam pengerjaannya. Bila lebih dari 2 hari maka akan mengurangi prosentase keberhasilan Puskom dan hal ini sangat berpengaruh pada ISO yang telah didapatkan oleh Puskom. Masalah ini terjadi karena pada aplikasi pencatatan perbaikan *hardware* yang saat ini digunakan tidak memiliki fitur *reminder* atau pemberitahuan barang apa saja yang telah dikerjakan dan sudah berapa lama waktu pengerjaan berlangsung. Aplikasi yang akan dibuat akan memiliki fitur *reminder* atau pemberitahuan kepada tiap-tiap *user*, sehingga *user* tidak lupa barang apa saja yang sedang dikerjakannya, batas waktu penyelesaian barang dan juga tidak lupa untuk menyelesaikan barang yang sedang ia kerjakan.

2. LANDASAN TEORI

2.1 Hypertext Preprocessor (PHP)

PHP (*Hypertext Preprocessor*) adalah bahasa *open source* yang dapat digunakan di berbagai mesin (Linux, Unix, dan Windows) dan dapat dijalankan secara *runtime* melalui *console* serta juga dapat menjalankan perintah-perintah sistem [1].

2.2 SQLSRV

SQLSRV adalah ekstensi yang gunanya untuk mengakses SQL Server dan SQL Azure saat menjalankan PHP di Windows [2]. Untuk menggunakan ekstensi ini pengguna harus meng-*install* SQL Server Native Client. SQLSRV berisi beberapa *driver* untuk mengakses SQL Server.

2.3 Google Cloud Messaging (GCM)

Google Cloud Messaging (GCM) adalah layanan yang memungkinkan kita untuk mengirim data dari server ke perangkat Android pengguna dan juga untuk menerima pesan dari perangkat pada koneksi yang sama. Layanan GCM menangani semua aspek antrian pesan dan pengiriman ke aplikasi Android yang berjalan pada perangkat target. GCM ini gratis tidak peduli seberapa besar kebutuhan *messaging* kita, dan tidak ada kuotanya [3].

2.4 Barcode

Barcode adalah representasi data yang dapat dibaca mesin optik. Awalnya data barcode dibuat dengan memvariasikan lebar dan jarak dari garis-garis paralel yang disebut linear barcode atau barcode satu dimensi (1D). Beberapa contoh barcode satu dimensi antara lain Codabar, Code 25, Code 11, Code 39, Code 93, Code 128 dan masih banyak lainnya. Sekarang data barcode telah berevolusi dalam berbagai bentuk seperti persegi panjang, titik, segi enam, dan pola geometris lainnya yang dikenal dengan barcode dua dimensi (2D). Contoh barcode dua dimensi adalah Aztec Code, Data Matrix, MaxiCode, SPARQCode, ShotCode, QR Code, dan lain sebagainya. Meskipun sistem dua dimensi menggunakan berbagai simbol tetapi mereka pada umumnya disebut sebagai barcode juga. Barcode pada awalnya hanya dapat dibaca oleh sebuah alat yang bernama barcode readers, tetapi sekarang barcode dapat dibaca menggunakan scanner dan smartphone.

Simbologi *barcode* adalah suatu sistem *encoding* data yang menghasilkan data yang sulit untuk diketahui oleh orang lain [4]. Hasil *encoding* data tersebut dapat diterjemahkan kembali menjadi bentuk data semula. Data yang akan di*-encode* dikelompokkan menjadi 3, yaitu:

- Numerik, terdiri atas angka dari 0 sampai dengan 9 saja.
- Alphanumerik, terdiri dari angka 0 sampai dengan 9 dan huruf A sampai dengan Z.
- ASCII, terdiri dari karakter ASCII dengan nilai 0 sampai dengan 127.

Secara umum terdapat dua tipe simbologi *barcode* yaitu *discrete* symbology dan continuous symbology. Discrete symbology adalah simbologi dimana setiap karakter diinterprestasikan sendirisendiri tanpa tergantung sisa dari *barcode* [4]. Setiap karakter diawali dan diakhiri dengan sebuah garis, antar karakter dipisahkan oleh spasi. Spasi di antara karakter tidak mengandung informasi apapun dan hanya berfungsi untuk memisahkan karakter saja. Untuk lebih jelasnya dapat dilihat Gambar 1. Continuous symbology adalah simbologi dimana setiap karakter tidak dapat diinterprestasikan sendiri-sendiri [4]. Hal ini dikarenakan setiap karakter diawali oleh garis dan diakhiri oleh spasi. Spasi terakhir dibatasi oleh garis pertama dari karakter berikutnya, oleh karena itu sebuah karakter tidak dapat berdiri sendiri. Continuous symbology selalu diakhiri oleh *termination bar* pada akhir *barcode* seperti yang terlihat pada Gambar 2.

Gambar 2. Continuous symbology

Discrete symbology membutuhkan lebih banyak tempat untuk mencetak data dibandingkan dengan Continuous symbology, karena discrete symbology menggunakan banyak spasi diantara karakter.

2.5 Code 128

Code 128 adalah simbologi *barcode* dengan *density* yang sangat tinggi. Simbologi ini dapat digunakan untuk *barcode* numerik, alphanumerik dan dapat mengkodekan semua 128 karakter ASCII. GS1-128 (sebelumnya dikenal sebagai UCC/EAN-128) adalah bagian dari Kode 128 dan digunakan secara luas di seluruh dunia dalam pengiriman dan kemasan industri sebagai kode identifikasi produk. Spesifikasi Code 128 dapat dilihat pada Gambar 3.

Gambar 3. Spesifikasi Code 128 Barcode ini terdiri dari beberapa bagian [5]:

1. *Quiet zone* (zona tenang)

Zona tenang harus setidaknya sepuluh kali lebar *bar* tersempit. Zona tenang wajib berada di sisi kiri dan kanan *barcode*. Zona tenang lebarnya harus tidak kurang dari 6.4mm.

- 2. Start/stop character
- 3. Setiap karakter dalam simbol *barcode* terdiri dari tiga *bar* dan tiga spasi. Setiap *bar* atau spasi 1, 2, 3 atau 4 lebar unit, jumlah lebar dari *bar* bahkan genap, jumlah lebar dari spasi harus ganjil, dan jumlah 11 unit per karakter. Misalnya, pengkodean nilai ASCII 0 dapat dilihat sebagai 10011101100, dimana 1 (Satu) adalah sebuah bar dan 0 adalah spasi.
- 4. Data
- 5. Check character

Check character ini digunakan untuk mengetahui apakah ada karakter illegal di dalam data dengan menggunakan perhitungan Modulo 103 checksum.

3. DESAIN SISTEM

Aplikasi Perbaikan Puskom membutuhkan tiga komponen pendukung utama yaitu koneksi internet, PHP, dan *server*. Sistem aplikasi perbaikan Puskom dapat kita lihat pada Gambar 1.

Gambar 4. Arsitektur sistem aplikasi Perbaikan Puskom

Aplikasi membutuhkan koneksi internet untuk dapat mengirim dan mengambil data dari *database* yang ada di *server*. Koneksi internet dapat menggunakan komunikasi data ataupun menggunakan *WiFi*. Di *server* data disimpan didalam *database* menggunakan SQL Server. PHP digunakan untuk mengolah data masuk atau keluar dari *server*.

4. ALUR PROGRAM

Secara umum, alur aplikasi INV-IT dapat dilihat pada Gambar 2.

Gambar 5. Flowchart alur aplikasi

Pada saat pertama kali aplikasi INV-IT dibuka, halaman *Login* akan ditampilkan, seperti yang terlihat pada Gambar 3.

Gambar 6. Halaman Login

Pada halaman Login ini terdapat 4 error handling yaitu :

- 1. Error handling bila tidak ada koneksi internet.
- Error handling bila username atau password tidak diisi oleh pengguna.
- 3. Error handling bila username dan password tidak sesuai.
- 4. Error handling bila username tidak terdaftar sebagai staf Puskom.

Bila pengguna berhasil melakukan otentikasi maka akan ditampilka halaman utama. Pada halaman utama terdapat fitur *reminder* yang akan dijalankan bila ada perbaikan yang dikerjakan oleh penggunan belum diselesaikan dalam 2 hari seperti yang terlihat pada Gambar 4 dan Gambar 5.

Gambar 7. Halaman utama

Gambar 8. Reminder

Pada halaman utama berisi 5 menu, yaitu :

 Tambah Perbaikan Baru : berfungsi untuk menambah perbaikan dengan cara mengisi *form-form* yang telah disediakan. Untuk dapat menambah perbaikan maka *form* kode barang, *customer*, dan kerusakan harus diisi terlebih dahulu. Untuk mengisi kode barang disediakan fitur *scan barcode* seperti yang terlihat pada Gambar 6. Aplikasi akan merubah data yang masukkan oleh pengguna ke dalam bentuk JSON untuk dikirimkan ke *server*. Di *server* data dalam bentuk JSON itu akan dipecah kembali untuk digunakan dalam *query database*. Halaman tambah perbaikan baru dapat dilihat pada Gambar 7.

MONITOR LCD 18,5
02460610001

Gambar 9. Scan Barcode

NV-IT
Kode Barang :
Scan Barcode
Customer :
1
Extension :
Email :
Staff Penerima :
Hendra Lamidjan 🛛 👻
Kerusakan :
Barang yang disertakan :
Divisi :
Hardware 👻 Jaminan M 👻
Submit

Gambar 10. Halaman Tambah Perbaikan Baru

2. Daftar Perbaikan Baru : berfungsi untuk melihat perbaikan yang belum dikerjakan. Disini dapat dilihat kode barang, nama barang, kerusakan dan tanggal masuknya barang, seperti yang terlihat pada Gambar 8.

Gambar 11. Halaman daftar perbaikan baru

Pada Gambar 8 terlihat perbaikan-perbaikan barang yang belum dikerjakan dan bila salah satunya ditekan maka keluar halaman detail perbaikan dimana pengguna dapat melakukan perbaikan pada barang tersebut atau justru menghapus perbaikan tersebut. Halaman detail perbaikan dapat dilihat pada Gambar 9.

INV-IT	
Kode Barang Barang Customer Kerusakan Penerima Staff yang Proses :	05100510001 Masalah Hardware P9 Wifi tidak bisa connect Staff Jaringan
Staff Jaringan	•
Proses	Delete

Gambar 12. Halaman Detail Perbaikan

3. Daftar Proses Perbaikan : berfungsi untuk melihat daftar perbaikan yang sudah dikerjakan seperti pada Gambar 8. Bila pengguna memilih salah satu perbaikan maka akan keluar halaman detail proses perbaikan. Disini pengguna dapat menyelesaikan perbaikan barang yang dilakukannya dengan cara mengisi penanganan apa yang dilakukan terhadap barang yang rusak tersebut. Halaman detail proses perbaikan dapat dilihat pada Gambar 10.

NV-IT	
Kode Barang Barang Customer Kerusakan Penerima Tanggal Pengerjaan Barang Disertakan	02013903021 Intel P 4-2400 Mhz P Nur Tidak bs booting Purwantoro A 31-05-2013 13:47:47
Jenis Perbaikai	1:
Service	•
Toko:	
Nota :	
Biaya :	
0	
	Update

Gambar 13. Halaman proses perbaikan

4. Daftar Selesai : berfungsi untuk melihat perbaikan yang sudah selesai dikerjakan seperti pada Gambar 8. Disini pengguna dapat melihat detail perbaikan, detail proses perbaikannya dan juga melihat apakah barang tersebut telah diambil oleh pemiliknya atau masih berada di Puskom. Bila pengguna memilih salah satu perbaikan yang belum diambil oleh pemiliknya maka akan keluar halaman pengambilan barang seperti yang terlihat pada Gambar 11.

Kode Barang	02065503232
Barang	ATX Middle Tower
Customer	Ibu Henny
Kerusakan	Harddisk bad sector
Penerima	Hans Juwiantho
Pengambil :	
Pak Surya	
Catatan :	
Keterangan :	
Keterangan :	
Keterangan : Staff :	
ieterangan : taff :	

Gambar 14. Halaman pengambilan barang

5. *History Hardware* : berfungsi untuk menampilkan sejarah perbaikan dari suatu barang disini dapat dilihat jumlah perbaikan, kerusakan yang terjadi, tanggal masuk, dan lain-lain seperti pada Gambar 8.

5. PENGUJIAN

Pengujian dilakukan dengan beberapa jenis ponsel dan versi Android yang berbeda. Hasil dari pengujian dapat dilihat pada Tabel 1.

Tabel 1. Hasil Pengujian		
Ponsel	Versi Android	Hasil
Samsung Galaxy W	2.3.6 (Gingerbread)	OK
Samsung Galaxy W	4.0.4 (Ice Cream Sandwich)	OK
Sony Xperia Acro S	4.0.4 (Ice Cream Sandwich)	ОК
Smartfren Andromax-i 4.0	4.0.4 (Ice Cream Sandwich)	ОК
Samsung Galaxy Tab 7.7 P6800	4.1.2 (Jelly Bean)	ОК
Samsung Galaxy S2 M250S	4.1.2 (Jelly Bean)	OK

Pada tabel hasil pengujian dapat dilihat, aplikasi dijalankan pada ponsel dengan versi Android Gingerbread, Ice Cream Sandwich dan Jelly Bean. Aplikasi berjalan dengan lancar dan tidak didapati ada masalah.

Tidak semua ponsel dapat memindai *barcode* dengan baik. Hal ini disebabkan karena kamera ponsel tidak dilengkapi dengan fitur *autofocus* sehingga pada saat menggambil gambar pada jarak yang dekat gambar yang diambil menjadi buram dan tidak dapat terfokus dengan baik sehingga garis-garis yang ada di *barcode* tidak dapat dibaca dengan baik. Daftar ponsel yang dapat menggunakan fitur *barcode scan* dapat dilihat pada Tabel 2.

Tabel 2. Daftar ponsel yang dapat melakukan barcode scan.

Smartphone	Sistem Operasi	Kamera
Ponsel dengan harga dibawah 1 juta rupiah		
LG Optimus L3 E400	2.3.6 (Gingerbread)	3.15 MP
Cross Andromeda A7	2.3.6 (Gingerbread)	5 MP
Motorola XT532	2.3.6 (Gingerbread)	5 MP

ZTE Skate	2.3.6 (Gingerbread)	5 MP
IMO Memo W6800	2.3.6 (Gingerbread)	8 MP
Smartfren Andromax-i	4.0.4 (Ice Cream Sandwich)	5 MP
Ponsel dengan harga ant	tara 1 juta sampai 1,5 juta ru	ıpiah
LG Optimus One P500	2.3.6 (Gingerbread)	3.15 MP
LG Optimus Net Dual P698	2.3.6 (Gingerbread)	3.15 MP
LG Optimus Net P699	2.3.6 (Gingerbread)	3.15 MP
LG Optimus L3 dual E405	2.3.6 (Gingerbread)	3.15 MP
Huawei Ideos X3 U8510	2.3.6 (Gingerbread)	3.15 MP
Huawei Vision U8850	2.3.6 (Gingerbread)	5 MP
Motorola Fire XT530	2.3.6 (Gingerbread)	5 MP
HTC Wildfire S PG76110	2.3.6 (Gingerbread)	5 MP
ZTE V889M	4.0.4 (Ice Cream Sandwich)	5 MP
Cyrus One TV	4.0.4 (Ice Cream Sandwich)	5 MP
IMO S99 Ocean	4.1.2 (Jelly Bean)	8 MP
Ponsel dengan harga 1,5 juta sampai 2 juta rupiah		
Samsung Galaxy Ace Plus S7500	2.3.6 (Gingerbread)	5 MP
Huawei Honor U8860	2.3.6 (Gingerbread)	8 MP
Sony Xperia Miro	4.0.4 (Ice Cream Sandwich)	5 MP
HTC One V	4.0.4 (Ice Cream Sandwich)	5 MP
LG Optimus L5 E612	4.0.4 (Ice Cream Sandwich)	5 MP
LG Optimus L5 dual E615	4.0.4 (Ice Cream Sandwich)	5 MP
Lenovo A800	4.0.4 (Ice Cream Sandwich)	5 MP
Lenovo S880	4.0.4 (Ice Cream Sandwich)	5 MP
Lenovo S560	4.0.4 (Ice Cream Sandwich)	5 MP
Ninetology Stealth i7520	4.0.4 (Ice Cream Sandwich)	5 MP
Polytron Wizard Twins W2500	4.0.4 (Ice Cream Sandwich)	5 MP
Acer Liquid Gallant E350	4.0.4 (Ice Cream Sandwich)	5 MP
Pixcom Andro Note 2	4.0.4 (Ice Cream Sandwich)	8 MP

Smartfren Andromax U	4.0.4 (Ice Cream Sandwich)	8 MP
Samsung Galaxy Fame S6810	4.1.2 (Jelly Bean)	5 MP
Oppo Find Piano	4.1.2 (Jelly Bean)	5 MP
ZTE Grand X V970M	4.1.2 (Jelly Bean)	5 MP
K-Touch Lotus II U86	4.1.2 (Jelly Bean)	5 MP
NS i-Con Neo 5s	4.1.2 (Jelly Bean)	5 MP
Huawei Ascend Y300	4.1.2 (Jelly Bean)	5 MP

Untuk ponsel dengan harga 2 juta rupiah ke atas tidak dimasukkan ke dalam Tabel 5.2 karena terlalu banyak jumlahnya. Ponsel dengan harga 2 juta rupiah atau ke atas, mayoritas dilengkapi dengan kamera lebih dari 5 *megapixel* dan memiliki fitur *autofocus* sehingga dapat digunakan untuk membaca *barcode*.

6. KESIMPULAN

- 1. Pada pengujian aplikasi, aplikasi sangat bergantung pada koneksi internet. Jika tidak ada koneksi internet maka aplikasi tidak dapat digunakan.
- 2. Aplikasi dapat berjalan baik di *smartphone* maupun pada *tablet* berbasis Android.
- 3. Aplikasi dapat berjalan dengan baik pada Android versi 2.3 (Gingerbread) dan versi-versi yang lebih baru.

- 4. Karena keterbatasan Google Cloud Print Beta sehingga hasil cetak secara *remote printing* tidak seperti yang seharusnya.
- 5. Untuk memindai *barcode* aplikasi membutuhkan komponen dari aplikasi ZXING.
- 6. Untuk dapat memindai *barcode* diperlukan ponsel dengan kamera minimal 3 *megapixel* dan dilengkapi dengan fitur *autofocus*.

7. DAFTAR PUSTAKA

- [1] Darie, Christian. & Balanescu, Emilian. (2008). *Beginning PHP and MYSQL*. New York: Apress.
- PHP Group. (2013). *Microsoft SQL Server Driver for PHP*. Retrieved January 7, 2013, from http://www.php.net/manual/en/book.sqlsrv.php
- [3] Google. (2012). Google Cloud Messaging for Android. Retrieved January 2, 2013, from http://developer.android.com/google/gcm/index.html
- [4] Girdhar Joshi. (2012). Information Technology for Retail:Automatic Identification & Data Capture Systems. Oxford University Press.
- [5] Nelson Benjamin (1997). Punched Cards to Bar Codes: A 200 Year Journey with Descriptions of over 260 Cods. Helmers Publishing.