
FPGA IMPLEMENTATION OF ZIEGLER-NICHOLS CLOSED-LOOP METHOD FOR

AUTOMATIC PID PARAMETERS TUNING

Nurotul Auliya’1, Nanang Sulistiyanto, Ir, M.T.2, and Mohamad Hairol Bin Jabbar, Dr3

Abstract – A control loop is necessary in order to control

a plant or system in order to gain low error system, robust

system, or system with fast response depend on the purpose.

The most commonly known and used control loop is

Proportional-Integral/Proportional-Integral-Derivative. In

order to gain the desired output, its parameters, which have

different effects, have to be set according to the design

requirements. Several methods can be used to determine the

parameter; one of them is Ziegler-Nichols closed-loop

method. The purpose of this project is to carry out FPGA

implementation of Ziegler-Nichols closed-loop method for

automatic PID parameters tuning. The commonly used

design hardware for digital projects is microcontroller.

Microcontroller device resources is limited, we do not know

how much device resources this project will take, and to add

an additional resources is quite complicated as well,

therefore we choose FPGA instead. This project is part of a

bigger project which consists of three projects, which are

handled by a student each. The most important parts for

this project are estimator and controller modules which are

located in the FPGA. This is because the estimator’s
function is to do the steps of the Ziegler-Nichols closed loop

method and the controller is necessary because the

estimator cannot function if there is no controller. To build

and test out the system, it is necessary to begin from the

subsystems. If the subsystem’s tests are successful, then the
probability for the overall system to be success is higher.

Experimental results show that the subsystems have been

successfully designed, but the overall system could not be

applied because the target Spartan 3E FPGA does not have

sufficient logic resources on. The first and second objectives

was achieved but the third objective was not achieved

because this project could not be applied on the target

FPGA and therefore this project has not been used on the

real tools.

Keywords – Auto-tuning PID controller, Ziegler-Nichols,

FPGA Implementation

I. INTRODUCTION

Direct current (DC) motors are the most commonly
used in industry. It is used for so many things, starting
from tool machines in general, piston pumps, grinding
machines, textile machines, paper machines, traction
vehicles, steel plants, rolling mill motors, mine hoists,
mixers, extruders, ship propulsion, and many others [1]
[2].

In order to use DC motors efficiently, a control loop
is needed. The most commonly known and used control
loop is PI (Proportional-Integral) and PID (Proportional-
Integral-Derivative) with percentage of more than 95%
[3] [4] [5]. This control loop is also pretty basic so it can
be combined with others to build automatic systems [3]
[4] [6].

1 Nurotul Auliya’ is a college student of Teknik Elektro of Brawijaya University in Malang, Indonesia (telephone number: +6285234025426;

email: indigo0shadow@gmail.com)
2 Nanang Sulistiyanto, Ir, M.T. is a lecturer of Teknik Elektro of Brawijaya University in Malang, Indonesia.
3 Mohamad Hairol Bin Jabbar, Dr. is a lecturer of FKEE of UTHM, Malaysia.

So that the output match with what we want, the
controller’s parameters have to be set according to the
requirements. Each parameter has certain effects when
they are changed, so it’s quite hard to choose the exact
parameters. Thankfully, there are methods to determine
the parameter, one of them is Ziegler-Nichols closed-
loop method [7] [4]. While the process to search the
parameters is quite harsh, this method can provide the
commonly smaller Integral of the Absolute value of Error
(IAE) and even smallest IAE for third order systems or
above compared to other methods [7].

Normally, Ziegler-Nichols closed loop is done
manually, but to do it manually, we have to see the
response which is displayed at monitor. We also have to
manually change the Kp parameter. We have to focus on
it, but if we use an automatic system, all the process can
be done with only one push. We do not have to see,
change the Kp parameter, and we can also do something
else during the process. [3]

In order to make Ziegler-Nichols closed loop method
done automatically, a tool is necessary as the controller
and the estimator for automatization process. The
commonly used design hardware is microcontroller, but
its resources is limited, we do not know how much device
resources this project will take, and to add an additional
resources is quite complicated as well, so we choose
FPGA instead.

FPGA nowadays has plenty of memory. It can also
display the output on monitor thanks to the attached VGA
port so we can see how the output turns out not from the
numbers in every period of time which is recorded and
then converted into graphic which later can be displayed
on monitor, but direct from the FPGA to the monitor [8].

The writer, basing on the background, tried to do this
project. Hopefully this project will help those who use
PID controllers.

II. LITERATURE REVIEW

2.1 Ziegler-Nichols Closed Loop Method

Ziegler-Nichols closed loop method refers to the
method by Ziegler-Nichols which is applied on a closed
loop system. The basic of closed loop system is as shown
in Figure 2-1.

Figure 2-1 Closed loop [4]

The main procedure of Ziegler-Nichols’ closed loop
method is to set PID parameter to be P controller. At first,
Kp is set to be zero then is increased until output signal
of measured y become oscillated. The Kp is then
recorded as Ku (ultimate gain) and the period of
oscillation is recorded as Tu (ultimate period). The last
step is to determine parameter’s value by using Table 2-1.

Table 2-1 Formulas for controller parameters in Ziegler-
Nichols closed loop method [9]

 Kp Ti Td

P controller 0.5Ku ∞ 0

PI controller 0.45Ku
𝑇𝑢1,2 0

PID controller 0.6Ku
𝑇𝑢2

𝑇𝑢8 = 𝑇𝑖4

The setpoint (r) used as excitation can be in the form

of step signal. The value of this signal has to be small, so
the process is not driven too far away from the operating
point where the dynamic properties of the process may
be different and must not be too small, or it may be
difficult to observe the oscillation due to inevitable
measurement noise. It is also important that the Ku is
found without the control signal being driven to any
saturation limit during the oscillation.
2.2 PID Controller

PID algorithm [4] can be written as equation (2-1): 𝑢(𝑡) = 𝐾 (𝑒(𝑡) + 1𝑇𝑖 ∫ 𝑒(𝜏)𝑡0 𝑑𝜏 + 𝑇𝑑 𝑑𝑒(𝑡)𝑑𝑡) (2-1)

Where:
e = error
u = control action/control variable
K = gain
Ti = integral time
Td = derivative time
t = time
Control variable is the accumulation of three terms:

P-term (proportional toward error), I-term (proportional
toward integral error), and D-term (proportional toward
derivative error) as pictured in Figure 2-2. Controller
parameters are proportional gain K, integral time Ti, and
derivative time Td.

Figure 2-2 PID algorithm [4]

In order to apply PID on FPGA, we need to simplify
the equation, since integral and derivative is hard to be
applied right away, we need to break up the PID equation
into equations for P-part, I-part, and D-part. 𝑢(𝑡) = 𝐾 (𝑒(𝑡) + 1𝑇𝑖 ∫ 𝑒(𝜏)𝑡0 𝑑𝜏 + 𝑇𝑑 𝑑𝑒(𝑡)𝑑𝑡) (2-2)

 𝑢(𝑡) = 𝑢𝑃(𝑡) + 𝑢𝑖(𝑡) + 𝑢𝑑(𝑡) (2-3)
Where:

𝑢𝑃(𝑡) = 𝐾𝑃. 𝑒(𝑡) , 𝐾𝑃 = 𝐾 (2-4) 𝑢𝑖(𝑡) = 𝐾𝑖 ∫ 𝑒(𝜏)𝑡0 𝑑𝜏 , 𝐾𝑖 = 𝐾 ∶ 𝑇𝑖 (2-5) 𝑢𝑑(𝑡) = 𝐾𝑑 𝑑𝑒(𝑡)𝑑𝑡 , 𝐾𝑑 = 𝐾 . 𝑇𝑑 (2-6)

Integral of a function can be represented as an area
below the line that the function represents. Therefore it
can be substituted by accumulation of small squares
under the line, which will turn the equation into equation
(2-7).
 𝑢𝑖(𝑡) = 𝐾𝑖 . (∑ 𝑒(𝜏). ∆𝜏𝑡𝜏=0) 𝑢𝑖(𝑡) = 𝐾𝑖 . ∆𝜏(∑ 𝑒(𝜏)𝑡𝜏=0) (2-7)

Derivative can be written in equation (2-8). With the
value of t is kept as close to zero as possible. 𝑢𝑑(𝑡) = 𝐾𝑑 . 𝑒(𝑛+𝑡)−𝑒(𝑛)𝑡 (2-8)

Since 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡), and the value of 𝑟(𝑡) for
Ziegler-Nichols closed loop method is constant, we can
change equation (2-8) into equation (2-9). By doing this,
we can also decrease

 𝑢𝑑(𝑡) = 𝐾𝑑 . (𝑟(𝑛+𝑡)−𝑦(𝑛+𝑡))−(𝑟(𝑛)−𝑦(𝑛))𝑡 , 𝑟(𝑛 + 𝑡) = 𝑟(𝑛)

 𝑢𝑑(𝑡) = 𝐾𝑑 . (−𝑦(𝑛+𝑡))−(−𝑦(𝑛))𝑡
 𝑢𝑑(𝑡) = 𝐾𝑑 . −𝑦(𝑛+𝑡)+𝑦(𝑛)𝑡 𝑢𝑑(𝑡) = 𝐾𝑑𝑡 (𝑦(𝑛) − 𝑦(𝑛 + 𝑡)) (2-9)

2.3 FPGA (Field Programmable Gate Array)

According to Farooq [10], FPGAs are pre-fabricated
silicon devices that can be electrically programmed in the
field to become almost any kind of digital circuit or
system. Normally FPGAs comprise programmable logic
blocks which implement logic functions, programmable
routing that connects these logic functions, and I/O
blocks that are connected to logic blocks through routing
interconnect and that make off-chip connections.

Figure 2-3 Overview of FPGA architecture [10]

Figure 2-3 shows a generalized example of a FPGA.
I/O represent input/output while CLB is abbreviation of
Configurable Logic Blocks. The CLBs and the I/O blocks
are interconnected by programmable routing resources.

2.4 IAE (Integral of the Absolute value of Error)

After designing and testing a machine, evaluation of
the performance is necessary. To do this evaluation, a
performance index is necessary. One of the performance
indexes that can be used which considers the entire closed
loop response is IAE. The equation for Integral of the
Absolute value of Error (IAE) is [7]: IAE = ∫ |𝑒(𝑡)|. 𝑑𝑡∞0 (2-10)

The performance index is adequately used to
represent the important system specifications instead of a
set of indices. The transfer function of a system is
considered as an optimal form when the system
parameters are adjusted so that the performance index
reaches an extreme value. IAE is one of the well-known
integral performance indices. [11]

III. METHODOLOGY

3.1 System Design

3.1.1 System architecture

Diagram block

text
6 pin header J1

(3 bits)

FPGA

Slide switches

(4bits)
Push button switch

(1 bit)

clk

VGA 5bit

DRIVER

MOTOR

SENSORCONV V

VGA

6 pin header J2 (2 bit)

Figure III-1 Block diagram of overall system

text text

y

ESTIMATOR

Conv

BUTTON

LCD

Driver
LCD

Kp, Ti, Td

PWM_Gen DRIVER

MOTOR

SENSOR
Conv

V

PWMu

VGA

Graph

_Gen

PARAMETER

text

text

text

rzn

CONTROLLER

Constant

_gen

- e

VGA

DRIVER

Figure III-2 Detailed block diagram of overall system

Where:
rzn = setpoint to apply condition for Ziegler-

Nichols closed loop method

u = control action

y = output process or response. In this case, y is

already measured

PWM = PWM signal

text

 work belong to other project

text

 work belong to joint project

As shown in Figure III-1 and Figure III-2, the most
important part is estimator, which will be in the FPGA.

The necessary ports of the FPGA are one push button,
slide switches, four pins (three as input and one as
output), VGA port, and LCD. The push button is needed
to reset the values and process. The slide switch is used
to decide which value will be displayed on the LCD (Kp,
Ku, Tu, Ti, Td), and to decide estimator’s mode (idle or
searching process). The three pins are used as inputs from
the rotary sensor, which number depends on the rotary
sensor’s output, while the other one is output to driver in
PWM signal. The VGA port is used to connect FPGA to
VGA so that the graphic can be displayed on the VGA.
The LCD is used to display the value of the searched
variables.

The driver is used to pull up the FPGA’s output
voltage to match motor’s maximum input. DC motor in
this case is acting as plant. Sensor, which is a rotary
sensor, is used to gauge the speed of the DC motor,
depend on the output value, it might need to be pulled up
or pulled down using Conv V device.
3.1.2 Subsystems

3.1.2.1 Controller

As explained in the system architecture, this
controller module has been designed by other student in
other project. Since this project needs controller, which
parameters are to be searched, we also use it in this
project.

Figure 3-3 Block diagram for controller

In Figure 3-3, r represent the setpoint. Ts represent t
in equation (2-9) and △𝜏 in equation (2-7). d_part, i_part
and p_part are using equations (2-9), (2-7), and (2-4)
respectively. For whether the controller becomes P
controller or PID controller, it depends on en_id value.
3.1.2.2 Estimator

The function of estimator module is to estimate the
parameters of a PID controller which control a process
using Ziegler-Nichols closed loop method.

START

Initialization

Search Tu

Search Ku

Get Kp, Ti, Td

STOP

Figure 3-4 Estimator: (left) module (right) flowchart

The estimator module shown in Figure 3-4 will
mostly use counter and comparation. The pause output
will be used to control multiplexer so that the parameters
value will be saved in the parameter and it will enable the
i_part and d_part of the controller.

The flowchart for the program in Figure 3-4 represent
Ziegler-Nichols closed loop process, which initial
process is to search Ku and Tu, while using the P
controller. Next, it will get the value of Kp, Ti, and Td. In
other words, this module can act to estimate the necessary
PID parameter for the process.
3.2 Test Method

The testing method is first using simulation. After
using simulation, the system is then applied on the FPGA
and is tested.

After the subsystem tests are considered successful,
we can try assembling the subsystems into the system.
The system will be tested using Figure III-5, with transfer
function of 1 : 1 for the Process and Sensor module.

ESTIMATOR

CONTROLLER

PROCESS

AND

SENSOR

u
Measured y

rzn

Kp, Ti, Td, Ku, Tu

pause

Figure III-5 System test 1

IV. EXPERIMENTATION, RESULTS, AND DISCUSSION

4.1 Subsystem simulation using ISE

In the simulator, we need to set the constant and the
clock. For the clock ‘clk’, we set the period = 20,000,
which means 20,000 ps (20 ns) with 50% duty cycle. For
clock ‘clk_mik’, we will set the period = 1,000,000,

which means 1,000,000 ps (1 μs) with 50% duty cycle.
rst variable is set to be constant with value of ‘1’ during
time 0 ps to 2 ps.
4.1.1 Estimator

4.1.1.1 Signal y stable, where y ≠ r

Figure IV-1 Simulation waveform for Estimator logic block, y

≠ r

As we can see in Figure IV-1, the output Kp firstly
change depend on Kp_p, that is after the time reaches
37.04 μs, while Ti, Td, Tu, and Ku wait for “(ymax1_p -

ymin1_p = ymax2_p -ymin1_p) and ymax1_p /= 0 and

pause_p = '1'” condition to be fulfilled. The value of
pause will decide whether the controller becomes P
controller or PID controller; the value of pause must be
either ‘1’ or ‘0’. Therefore, since the value of Kp changes
right when t_p = ttest = 2516, and the value of pause is
not UUUU or XXXX, this test is considered success.

4.1.1.2 Signal y stable, where y = r

Figure IV-2 Simulation waveform for Estimator logic block,

y=r

From Figure IV-2 and Figure IV-3, we can tell that
the value of Kp_p changes 1 clk clock after the value of
t_p turn into 2516. We also know that the value of t_tu_n
changes after cnt_y_p’s value turn into 316 and it will not
change if the value of cnt_y_p is zero. While the value of
Tu_p and Tu_n is rather messed up because the value of
y is constantly the same as the value of r, this test still can
be considered success because they work pretty much
fine.

Figure IV-3 Simulation waveform for Estimator

logic block, y=r, zoom

4.1.1.3 Signal y changing, with constant amplitude

Figure IV-4 Simulation waveform for estimator logic block,

changing y, constant amplitude

From Figure IV-4 and Figure IV-5 (xlxn_33 is y), we
can tell that ymax1’s value changes on the first sign_n=0
and sign_p=1 (2.44 μs), ymax2’s value changes on the
second one (6.84 μs), and ymin1’s value changes at the
second sign_n=1 and sign_p=0 (4.64 μs). After that,
since it has fulfilled “(ymax1_p - ymin1_p = ymax2_p -

ymin1_p) and ymax1_p /= 0 and pause_p = '1'”
condition, Kp become permanent, pause value become
‘0’, and output Tu, Ti, Td, and Ku also generate value.

Figure IV-5 Simulation waveform for estimator logic block,

changing y, constant amplitude, zoom

From the gained values of ymax1, ymin1, and ymax2,
we can get Tu = 6.84 μs - 2.44μs = 4.4 μs while the value
of Ku is the same as Kp that time, that is 0. From these
Ku and Tu’s value, we can get Kp, Ti, and Td. As shown
in Table IV-1, this logic block can not read and write
fractions.

Table IV-1 Supposed and observed values of Tu, Kp, Ti, and

Td

 Supposed value Observed value

Ku Tu Kp Ti Td Tu Kp Ti Td

0 4.4 0 2.2 0.55 4 0 2 0

4.1.1.4 Signal y changing, with changing amplitude

Figure IV-6 Simulation waveform for estimator

logic block, changing y, changing amplitude

Figure IV-7 Simulation waveform for estimator logic block,

changing y, changing amplitude, zoom

From Figure IV-6 and Figure IV-7, we can tell that if
the amplitude constantly changes, “(ymax1_p - ymin1_p

= ymax2_p -ymin1_p) and ymax1_p /= 0 and pause_p =

'1'” condition will never be fulfilled. Therefore the value
of Kp keeps increasing and the value of Ku, Tu, Ti, and
Td remain UUUU.

From the test of constant y and changing y input, it
can be concluded that the estimator module is a success.
4.2 System simulation using ISE

4.2.1 System test 1

Figure IV-8 Simulation waveform of system test 1

From Figure IV-8 and Figure IV-9, we can see that
Kp changes every 37.04 μs and pause have the value of
‘1’. This shows that the estimator is working fine in the
system. It can also be seen that the value of y becomes
the value of u straight away, which shows that the
proc_sens (process and sensor) module is working fine in
the system. The value of u and e also changes depend on
the value of y and Kp. This shows that controller module
works fine in the system.

Figure IV-9 Simulation waveform system test 1, zoom

From Figure IV-9, we can tell that the value of u
changes after half clk time. It also changes to the value of
e multiply kp after half clk time. Meanwhile, the value of
y seems to become the same as the value of u without
delay.

We can not do IAE performance index yet, because
until the time reaches 90 μs (the maximum time in Figure
IV-8), the value of Ku and Tu have not been found, which
means the value of Kp, Ti, and Td, which are the
parameters, which we intend to apply the performance
index on, have not been found yet.
4.2.2 Synthesize of system test 1

This system has a huge problem, that is
“WARNING:Xst:1336 - (*) More than 100% of Device
resources are used”, meaning that in order to apply the
system, more device resources are needed. The detail is
shown in Figure IV-10.

Figure IV-10 Device utilization summary: Spartan 3E Starter

Kit

In order to solve the device resources problem, we
tried to synthesize it to a Spartan 6 FPGA. The result is
that the problem is solved.

V. CONCLUSIONS

5.1 Conclusions

The reached conclusion is that while the subsystems
have been successful, the system itself could not be
applied on FPGA Spartan 3E Starter Kit because it does
not has sufficient device resources, with the system test 1
used up 150% of Slices and 111% of Slice Flip-Flop.

Parts of the objectives was not achieved because the
project is not fully completed. The objectives that was
achieved are the first objective, that is to design an
estimator logic block to be integrated with PID controller
for closed loop system on FPGA, and the second
objective, that is to apply Ziegler-Nichols closed loop

method using the estimator and the PID controller, with
both are successful though they are unable to read and
write decimal fractions. The third objective, that is to
evaluate the performance in terms of IAE, was not
achieved because this project has not been used on the
real tools yet.

In order to fully complete this project, we need to be
able to apply the system on FPGA with the process,
sensor, and all as well as to evaluate the performance of
the overall system.

For the future works, it will be better if the estimator
can also read and write decimal fractions, which means
having a better accuracy, it will also be good if the
estimator can search for all three parameters that is for P
controller, PI controller, and PID controller, which we
can choose one of them depend on the wanted controller.

REFERENCES

[1] Grupo WEG, DC Motors, Brazil: www.weg.net,
2013.

[2] Teco, DC MOTORS, Texas: Teco-Westinghouse,
2000.

[3] K. J. Åström, Control System Design Lecture notes
for ME 155A, Santa Barbara: Department of
Mechanical & Environmental Engineering
University of California, 2002.

[4] K. J. d. T. H. Åström, PID Controllers, 2nd Edition,
Alexander Drive: Instrument Society of America,
1934.

[5] B. C. Kuo, Automatic Control Systems Sixth
Edition, New Jersey: Prentice-Hall, 1962.

[6] F. Haugen, SCE1106 Control with
Implementation, Norway: TechTeach, 2009.

[7] A. d. M. S. Zomorrodi, Comparison of PID
Controller Tuning Method, Iran: Department of
Chemical and Petroleum Engineering Sharif
University of Tecnology, 2013.

[8] Xilinx, Digilent Nexys 2 Board Reference Manual,
Pullman: Digilent, 2011.

[9] F. Haugen, Ziegler-Nichols’ Closed-Loop Method,
Skien, Norway: TechTeach, 2010.

[10] U. d. Farooq, Tree-Based Heterogeneous FPGA
Architectures, New York: Springer
Science+Business Media, 2012.

[11] Z. Y. C. I. P. Jiao, Distributed-Order Dynamic
Systems, Springer.com, 2012.

[12] W. Bolton, Mechatronics Electronic control
systems in mechanical and electrical engineering
Third Edition, Harlow, England: Pearson, Prentice
Hall, 2003.

[13] Cytron, B106 Rotary Encoder User's Manual,
Johor: Cytron Technologies, 2010a.

[14] Cytron, SPG50 Series, Cytron Technologies.

[15] Cytron, B106 Series Datasheet, Johor: Cytron
Technologies, 2010b.

[16] Xilinx, Spartan-3E Starter Kit Board User Guide,
Pullman: Digilent, 2006.

