

OPTIMASI MODEL TRANSPORTASI DALAM PENGUKURAN KINERJA MANAJEMEN RANTAI PASOKAN BERAS: STUDI KasUS DI PERUM BULOG DIVISI REGIONAL JAWA BARAT

Galuh Chandra Dewi**, E. Gumbira-Sa'id*** dan Idqan Fahmi**

**Alumni MMA-IPB dan Staf LIPI dan Program Pascasarjana Manajemen dan Bisnis, IPB
***Guru Besar Teknologi Industri Pertanian, Fakta, dan Staf Pengajar Program Pascasarjana Manajemen dan Bisnis, IPB
***Staf Pencakar Program Pascasarjana Manajemen dan Bisnis, IPB

ABSTRACT
The purpose of this study was to analyse the ability of West Java in providing the needs of rice through all over West Java as well as the surrounding regions; and to evaluate optimal rice distribution among the regions. It was predicted that the rice production volume in West Java and Banten Provinces tend to decrease, each for 3 806.33 Tons per quarter and 1 662.85 Tons per quarter. The optimal rice transportation network should be conducted through rice distribution from Cirebon Sub Regional Division to Ciamis Sub Regional Division or from Karawang Sub Regional Division to Cianjur Sub Regional Division. Rice distribution could be conducted from Cirebon, Indramayu, Karawang and Sukabumi Sub Regional Divisions to Jakarta Raya Sub Regional Division.

Keywords: rice, bulog, forecasting, production, consumption, transportation model, linear programming

PENDAHULUAN
Latar Belakang

Dalam pihak Bulog harus mempertimbangkan keberlanjutan pasokan beras lokal nasional, karena peningkatan konsumsi beras cenderung tidak diimbangi dengan pemanfaatan lahan produksinya. Rantai pasokan yang tidak optimal mengakibatkan Bulog tetap tergantung pada beras impor, sehingga hasil produksi beras lokal belum didistribusikan secara maksimal. Dengan demikian, tantangan Bulog adalah menjalankan tugasnya untuk menyerap surplus produksi beras di lokasi-lokasi sentra produksi lokal, serta memasok daerah-daerah desitif beras, tanpa tergantung pada beras impor. Hal tersebut mendorong dilakukannya analisis optimasi distribusi beras Bulog dari lokasi-lokasi surplus beras menuju lokasi-lokasi desitif beras, yang dalam hal ini dilakukan di Jawa Barat, sebagai daerah operasional Bulog terbesar, yang berpotensi mendistribusikan kelebihan beras menuju wilayah-wilayah diikutiannya yang mengalami kekurangan persediaan beras.

METODOLOGI
Pendugaan volume pasokan (produksi) dan permintaan (konsumsi) dilakukan dengan metode Kenyon dan Lucas (1998) dan dilohh menggunakan software...
HASIL DAN PEMBAHASAN
Pendugaan Volume Produksi Beras di Jawa Barat, Banten dan DKI Jakarta

Penurunan produksi beras cenderung diakibatkan oleh menurunnya luas lahan yang digunakan, akibat konversi lahan persawahan menjadi perumahan, industri dan bisnis di Jawa Barat dan Banten. Mengingat di Kawasan Subdivir Jakarta tidak dilakukan kegiatan produksi padi secara komersial, maka volume produksi berasnya = 0, sehingga persamaan trend volume produksi beras untuk

<table>
<thead>
<tr>
<th>Titik Asal (i)</th>
<th>Titik Tujuan (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivir Cirebon</td>
<td>Subdivir Cianjur</td>
</tr>
<tr>
<td>Subdivir Indramayu</td>
<td>Subdivir Bandung</td>
</tr>
<tr>
<td>Subdivir Karawang</td>
<td>Subdivir Ciamis</td>
</tr>
<tr>
<td>Subdivir Serang</td>
<td>Subdivir Jakarta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i=1</th>
<th>j=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivir Cirebon</td>
<td>Subdivir Cianjur</td>
</tr>
</tbody>
</table>

KESIMPULAN DAN IMPLIKASI KEBIJAKAN

Kesimpulan

Berdasarkan hasil dan pembahasan, maka dapat ditarik kesimpulan sebagai berikut:

1. Produkivitas di tingkat usahatani dan PG dapat ditingkatkan melalui pengembangan suatu keterpaduan sistem jadwal tanam, tebang, giling, dan bagi hasil. Sistem tersebut dikembangkan dalam suatu model yang bersifat lebih partisipatif/interaktif dengan model multi party multi objective (MPMO).

2. Model sistem keterpaduan jadwal tanam dan tebang telah berhasil di bangun. Model Kebon Agung merupakan representasi wilayah PG di Jawa yang antara lain dicirikan oleh lahan yang lebih sempit, kontribusi tebu rakyat lebih luas, sewa lahan relatif tinggi, dan tidak menggunakan mekanisasi.

3. Model keterpaduan sistem produksi tersebut dapat dimanfaatkan untuk mencari solusi kompromi kelompok berkepentingan di industri gula yaitu petani keparan, petani PC, penebang, PG, dan pemerintah daerah. Solusi kompromi tersebut harus dinamis, harmonis pknadang negosiasi kelompok berkepentingan dan perubahan berbagai kebijakan dan kondisi serta perubahan pola rendemen, perubahan sistem bagi hasil, kebijakan pemerintah yang berkaitan dengan harga output, dan ketersediaan kredit.

Implikasi Kebijakan

2. Mengingat penerapan MPMO tersebut relatif memerlukan kemampuan analisis dan formulasi model yang memadai, sosialisasi atau transfer teknologi tentu hal tersebut ke pihak PG dan petani merupakan suatu prasyarat penerapan pendekatan tersebut.

DAFTAR PUSTAKA

mengalami perubahan (Tabel 7). Sebagai contoh, produktivitas petani dengan tanaman PC mengalami peningkatan dari 4.06 Ton/ha menjadi 5.15 Ton/ha. Produkivitas petani tanaman keprasan juga meningkat walau peningkatan bersifat marginal yaitu dari 4.17 Ton/ha menjadi 4.46 Ton/ha. Sebagai akibatnya, gross margin petani tanaman PC mengalami peningkatan yang cukup signifikan yaitu dari Rp 2.64 juta/ha menjadi Rp 4.84 juta/ha. Sebagai akibatnya, gross margin yang diterima PG mengalami penurunan dari Rp 7.06 juta/ha menjadi Rp 6.84 juta/ha.

Perubahan tersebut juga membawa dampak kepada pencapaian tujuan pemerintah. Justru meningkat sekitar 1.44%, dari total produksi 41.880 ton menjadi sekitar 42.483 ton (Tabel 8). Namun demikian, untuk lapangan kerja dan penerimaan pajak, pencapaian fungsi tujuan pemerintah mengalami penurunan. Penerimaan pajak menurun cukup signifikan yaitu sebesar 53.61%, sedangkan lapangan kerja mengalami penurunan sekitar 3.37%.

Kondisi tersebut dinilai sudah memenuhi aspirasi semua pihak yang berkepentingan. Oleh sebab itu, solusi kompromi 2 dianggap sudah dapat dianggap sebagai dasar perencanaan dalam jadwal tanam, tebang/giling, serta berbagi keuntungan yang berkaitan dengan pihak petani dan PG.

Solusi kompromi yang dihasilkan dapat berubah sesuai dengan dinamika yang terjadi antar pihak yang terkait. Model MPMO yang dikembangkan memungkinkan untuk melakukan negosiasi/kompromi kembali bagi pihak-pihak yang berkepentingan. Beberapa faktor atau aspek yang dapat dikompromikan kembali antara lain adalah sistem bagi hasil, harga tingkat petani, dan alokasi kredit. Sistem bagi hasil antara petani dan pg yang seluarn berlaku yaitu 65% gula untuk petani dan 35% untuk PG dapat dinegosiasikan.

Tabel 6. Jadwal Tanam dan Tebang Petani Tanaman Keprasan Kompromi 2, di Kebon Agung

<table>
<thead>
<tr>
<th>Tanam</th>
<th>Tebang/Giling</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>Mei</td>
<td>Juni</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mei</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>Juni</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>Juli</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>Agustus</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>September</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>Oktober</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>November</td>
<td>1388</td>
<td>0</td>
</tr>
<tr>
<td>Desember</td>
<td>1388</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabel 7. Areal, Produksi, dan Produktivitas Kompromi 2, di Kebon Agung

<table>
<thead>
<tr>
<th>Areal (ha)</th>
<th>Petani PC</th>
<th>Petani RT</th>
<th>Total Petani</th>
<th>PG PC</th>
<th>PG RT</th>
<th>Total PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1388.00</td>
<td>741.00</td>
<td>906.00</td>
<td>116.00</td>
<td>116.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produksi (Ton habitar)</td>
<td>8521</td>
<td>33051</td>
<td>41572</td>
<td>678.8</td>
<td>678.8</td>
<td></td>
</tr>
<tr>
<td>Produkivitas (Ton habitar/ha)</td>
<td>5.15</td>
<td>4.46</td>
<td>4.59</td>
<td>0.00</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>Gross margin (Rp M)</td>
<td>8.65</td>
<td>27.69</td>
<td>35.69</td>
<td>8.420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross margin (Rp juta/ha)</td>
<td>4.84</td>
<td>3.74</td>
<td>3.94</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kawanw Divre DKI Jakarta sama dengan persamaan trend produksi beras Kawan Subdivre Sengar (Tabel 1). Volume produksi beras di Jawa Barat pada kuartal pertama (Januari hingga April) lebih tinggi 40.27% dibandingkan dengan volume produksi rata-ratanya per kuartal. Volume produksi beras di kawan tersebut pada kuartal kedua (Mei-Agustus) lebih tinggi 6.89% dari volume produksi beras pada kuartal terakhir (September – Desember) 46.27% lebih rendah dari volume produksi beras rata-rata kuartalannya. Produksi beras di Subdivre Cirebon pada kuartal pertama, kedua dan ketiga secara berturut-turut adalah 52.90% lebih tinggi; 16.23% lebih tinggi; dan 69.12% lebih rendah dari volume produksi beras rata-rata kuartalannya. Produksi beras di Subdivre Cirebon pada kuartal pertama, kedua dan ketiga secara berturut-turut adalah 52.90% lebih tinggi; 16.23% lebih tinggi; dan 69.12% lebih rendah dari volume produksi beras rata-rata kuartalannya.

Target: Trend Produksi Beras di Jawa Barat, Banten dan DKI Jakarta

<table>
<thead>
<tr>
<th>Kawasan</th>
<th>Persamaan Garis Trend</th>
<th>MAPE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivre Cianjur</td>
<td>Yt = 339 885 + 957 265t</td>
<td>11</td>
</tr>
<tr>
<td>Subdivre Cirebon</td>
<td>Yt = 276 801 – 977 321t</td>
<td>11</td>
</tr>
<tr>
<td>Subdivre Indramayu</td>
<td>Yt = 296 139 – 887 026t</td>
<td>20</td>
</tr>
<tr>
<td>Subdivre Karawang</td>
<td>Yt = 331 719 – 1 497 40tt</td>
<td>15</td>
</tr>
<tr>
<td>Subdivre Subang</td>
<td>Yt = 234 741 – 2 346 39tt</td>
<td>10</td>
</tr>
<tr>
<td>Subdivre Ciamis</td>
<td>Yt = 175 529 – 2 284 34tt</td>
<td>10</td>
</tr>
<tr>
<td>Subdivre Bandung</td>
<td>Yt = 201 707 + 7 882 84tt</td>
<td>8</td>
</tr>
<tr>
<td>Divre Jawa Barat</td>
<td>Yt = 1 979 722 – 3 806 33tt</td>
<td>10</td>
</tr>
<tr>
<td>Divre Serang</td>
<td>Yt = 563 541 – 662 83tt</td>
<td>17</td>
</tr>
<tr>
<td>Divre DKI Jakarta</td>
<td>Yt = 363 541 – 662 83tt</td>
<td>17</td>
</tr>
</tbody>
</table>

Keterangan: MAPE = Mean Absolute Percentage Error
Pendugaan Volume Konsumsi Beras di Jawa Barat, Banten dan DKI Jakarta

Estimasi konsumsi beras per kapita dihasilkan dalam model trend kuartik Yt = 152.793 + 2.15549t – 0.42692t2, dengan volume konsumsi beras per kapita untuk tahun 2004, 2005, dan 2006, masing-masing sebesar 137.66 kg/tahun/kapita, 134.47 kg/tahun/kapita, dan 134.43 kg/tahun/kapita. Jumlah penduduk maksimal sebesar 5% dari yang dicapai pada solusi 1. Hal ini wajar karena gross margin dari tanaman PC jauh diatas gross margin dari tanaman PC. Disingkat pula bahwa keterendahan PC tersebut juga sebagai akibat pendekatan pemerintah daerah karena pemerintah daerah punya kepentingan untuk menjamin tanaman tebu yang tanaman yang dipertahankan sudah diatas 75% dan sudah merupakan tanaman yang lebih dari lima kali kepar. Pemerintah juga bersedia menerima konsekuensi, baik itu menyangkut target produksi, tenaga kerja, maupun penerimaan, sebagai akibat perubahan tersebut.

Tabel 3. Hasil Pendugaan Volume Produksi Beras di Jawa Barat, Banten dan DKI Jakarta (Ton)

<table>
<thead>
<tr>
<th>Tahap/</th>
<th>Kuantitas Operasional</th>
<th>Subdiv</th>
<th>Divjak Barat</th>
<th>Subdiv Serang*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Cibinong</td>
<td>Cirebon</td>
<td>Indramayu</td>
<td>Karawang</td>
</tr>
<tr>
<td>I</td>
<td>349.635</td>
<td>337.816</td>
<td>366.870</td>
<td>358.106</td>
</tr>
<tr>
<td>II</td>
<td>377.514</td>
<td>283.049</td>
<td>216.941</td>
<td>240.048</td>
</tr>
<tr>
<td>III</td>
<td>192.147</td>
<td>174.802</td>
<td>251.079</td>
<td>225.228</td>
</tr>
<tr>
<td>IV</td>
<td>345.120</td>
<td>380.753</td>
<td>302.276</td>
<td>325.484</td>
</tr>
<tr>
<td>V</td>
<td>380.480</td>
<td>279.658</td>
<td>233.742</td>
<td>264.494</td>
</tr>
<tr>
<td>VI</td>
<td>393.633</td>
<td>371.986</td>
<td>353.288</td>
<td>232.054</td>
</tr>
<tr>
<td>VII</td>
<td>349.963</td>
<td>367.870</td>
<td>298.171</td>
<td>346.829</td>
</tr>
<tr>
<td>IX</td>
<td>195.118</td>
<td>32.651</td>
<td>49.048</td>
<td>218.070</td>
</tr>
</tbody>
</table>

Analisis Selisih Volume Produksi dan Volume Konsumsi Beras

Tabel 5. Pendugaan Volume Produksi Beras di Jawa Barat, Banten dan DKI Jakarta (Ton)

<table>
<thead>
<tr>
<th>Wilayah Operasional</th>
<th>Tahun</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdiv Cianjur</td>
<td>9.538.436</td>
<td>9.784.309</td>
<td>10.037.986</td>
<td></td>
</tr>
<tr>
<td>Subdiv Cibon</td>
<td>4.508.556</td>
<td>4.557.120</td>
<td>4.604.543</td>
<td></td>
</tr>
<tr>
<td>Subdiv Indramayu</td>
<td>1.630.851</td>
<td>1.663.870</td>
<td>1.674.867</td>
<td></td>
</tr>
<tr>
<td>Subdiv Karawang</td>
<td>5.945.079</td>
<td>6.151.154</td>
<td>6.365.877</td>
<td></td>
</tr>
<tr>
<td>Subdiv Subang</td>
<td>2.151.286</td>
<td>2.179.391</td>
<td>2.207.806</td>
<td></td>
</tr>
<tr>
<td>Subdiv Ciamis</td>
<td>6.078.003</td>
<td>6.154.481</td>
<td>6.279.638</td>
<td></td>
</tr>
<tr>
<td>Subdiv Bandung</td>
<td>7.535.803</td>
<td>7.684.150</td>
<td>7.850.625</td>
<td></td>
</tr>
<tr>
<td>Subdiv Serang</td>
<td>9.605.000</td>
<td>9.309.000</td>
<td>9.730.400</td>
<td></td>
</tr>
<tr>
<td>Subdiv Jakarta Raya</td>
<td>6.936.100</td>
<td>6.899.600</td>
<td>7.855.700</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: BPS Propinsi Banten (2002)

Ditunjuk dari gross margin per ha, petani PC relatif paling rendah. Di samping disebabkan oleh biaya produksinya yang lebih tinggi, tingkat produktivitasnya juga sedikit di bawah petani kepanasan. Rendahnya produktivitas disebabkan oleh jadwal tanam dan tebang petani PC yang umumnya tidak pada umur optimal. Konsekuensi dari kondisi tersebut adalah bahwa gross margin dari tanaman tebu PC milik petani adalah rendah yaitu hanya Rp. 2.64 juta/ha. Nilai tersebut jauh dibawah petani dengan tanaman kepanasan yang mencapai Rp. 3.74 juta/ha.

Hasil dari semua hal tersebut adalah pencapaian fungsi tujuan masing-masing pihak yang terlibat (Tabel 5). Dibandingkan dengan petani kepanasan dengan nilai fungsi tujuan lebih dari Rp. 27 miliar, pencapaian fungsi tujuan petani PC jauh lebih rendah yaitu hanya sedikit diatas diatas Rp. 6.5 miliar. Tampak pula bahwa pemerintah memperoleh pendapatan (PPh) lebih dari Rp. 0.29 miliar dengan jumlah lapangan kerja lebih dari 11 ribu orang.

Dengan hasil pencapaian tersebut, petani tebu PC diperkirakan tidak puas sehingga tidak bersedia menerima solusi tersebut. Pemerintah daerah juga diperkirakan tidak dapat menerima solusi tersebut sehingga mereka cenderung mendorong perluxaan tanaman PC untuk mengatasi tantangan kepanasan. Terhadap situasi tersebut, disusun pula bahwa pihak PG bersedia menurunkan tingkat pencapaianannya.

Tabel 4. Areal, Produksi, dan Produktivitas Komoditi 1, di Kebon Agung

<table>
<thead>
<tr>
<th>Deskripsi</th>
<th>Petai PC</th>
<th>Petai RT</th>
<th>Total Petai</th>
<th>PCG</th>
<th>PG TR</th>
<th>Total PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areal (ha)</td>
<td>2470</td>
<td>741</td>
<td>9881</td>
<td>0</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>Produksi (Ton baku)</td>
<td>10039</td>
<td>3090</td>
<td>49059</td>
<td>0</td>
<td>949</td>
<td>949</td>
</tr>
<tr>
<td>Produksit (Ton baku)</td>
<td>4.06</td>
<td>4.17</td>
<td>4.14</td>
<td>0.01</td>
<td>4.85</td>
<td>4.85</td>
</tr>
<tr>
<td>Gross margin (Rp/M)</td>
<td>6.53</td>
<td>27.69</td>
<td>34.22</td>
<td>0</td>
<td>217.08</td>
<td>8.857</td>
</tr>
<tr>
<td>Gross margin (Rp/ha)</td>
<td>2.64</td>
<td>3.74</td>
<td>3.48</td>
<td>0.005</td>
<td>7.06</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 5. Pencapaian Fungsi Tujuan pada Komoditi 1, di Kebon Agung

<table>
<thead>
<tr>
<th>Pihak</th>
<th>Fungsi Tujuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petani PC (Rp/meter)</td>
<td>6.532</td>
</tr>
<tr>
<td>Petani RT (Rp/meter)</td>
<td>27.69</td>
</tr>
<tr>
<td>Pabrik Gula (Rp/meter)</td>
<td>8.853</td>
</tr>
<tr>
<td>Peneb (Rp/meter)</td>
<td>2.289</td>
</tr>
<tr>
<td>Pemerintah : Produksi (Ton)</td>
<td>41880</td>
</tr>
<tr>
<td>Pemerintah : Lapangan Kerja (Orang)</td>
<td>11349</td>
</tr>
<tr>
<td>Pemerintah : Penerimaan (Milliar)</td>
<td>0.291</td>
</tr>
</tbody>
</table>

Beberapa informasi yang terkait dengan jadwal tanam dan tebang tersebut disajikan pada Tabel 4. Total areal untuk petani adalah 9881 ha yang terdiri dari 2470 tanaman PC dan 7411 tanaman kepandaian. Dari sisi lain, total areal tanaman tebu PG hanya 194 ha yang keseluruhannya adalah tanaman kepandaian. Selanjutnya, total produksi gula petani adalah 40939 Ton gula dengan produktivitas berkisar antara 4.06-4.14 Ton gula/ha. Produktivitas kebun PG yang mencapai 4.83 Ton gula/ha, sedikit lebih tinggi dari yang dilakukan petani.

Ditinjau dari gross margin per ha, petani PC relatif paling rendah. Di samping disebabkan oleh biaya produksinya yang lebih tinggi, tingkat produktivitanya

Tabel 2. Matriks Pay-Off untuk Pihak-Pihak di PG Kebon Agung

<table>
<thead>
<tr>
<th>Tujuan Yang Dimaksimalkan</th>
<th>Nilai Fungsi Tujuan (Rp/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petani PC</td>
<td>16491</td>
</tr>
<tr>
<td>Petani Kepandaian</td>
<td>23233</td>
</tr>
<tr>
<td>Pabrik Gula</td>
<td>44413</td>
</tr>
<tr>
<td>Pemerintah: Produksi</td>
<td>23654</td>
</tr>
<tr>
<td>Pemerintah: Lapangan Kerja</td>
<td>23409</td>
</tr>
<tr>
<td>Pemerintah: Penerimaan</td>
<td>21700</td>
</tr>
</tbody>
</table>

Keterangan:
- ZFPC: Nilai fungsi tujuan petani PC
- ZFRT: Nilai fungsi tujuan petani RT
- ZPG: Nilai fungsi tujuan PG
- ZS: Nilai fungsi tujuan pemerintah

Tabel 3. Jadwal Tanam dan Tebang/Giling Petani Tanaman Kepandaian, di Kebon Agung

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petani PC</td>
<td>16491</td>
</tr>
<tr>
<td>Petani Kepandaian</td>
<td>23233</td>
</tr>
<tr>
<td>Pabrik Gula</td>
<td>44413</td>
</tr>
<tr>
<td>Pemerintah: Produksi</td>
<td>23654</td>
</tr>
<tr>
<td>Pemerintah: Lapangan Kerja</td>
<td>23409</td>
</tr>
<tr>
<td>Pemerintah: Penerimaan</td>
<td>21700</td>
</tr>
</tbody>
</table>

total produksi gula di kawasan tersebut. Wilayah operasional Subdivre Indramayu dipredikskikan mengalami surplus beras tertinggi, yakni rata-rata 367 886 Ton/tahun, yang kemudian diikuti oleh wilayah Subdivre Subang (rata-rata 288 163 Ton/tahun); wilayah Subdivre Ciamis (rata-rata 279 268 Ton/tahun); Subdivre Cirebon (rata-rata 222 372 Ton/tahun); dan wilayah Subdivre Karawang (rata-rata 262 662 Ton/tahun). Dalam pihak, wilayah-wilayah Subdivre Bandung dan Cianjur diduga mengalami kekurangan persediaan beras, masing-masing: 450 263 Ton/tahun; dan 305 507 Ton/tahun (Tabel 6).

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petani PC</td>
<td>16491</td>
</tr>
<tr>
<td>Petani Kepandaian</td>
<td>23233</td>
</tr>
<tr>
<td>Pabrik Gula</td>
<td>44413</td>
</tr>
<tr>
<td>Pemerintah: Produksi</td>
<td>23654</td>
</tr>
<tr>
<td>Pemerintah: Lapangan Kerja</td>
<td>23409</td>
</tr>
<tr>
<td>Pemerintah: Penerimaan</td>
<td>21700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wilayah Operasional Bulog</th>
<th>Volume Produksi dan Konsumsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subdivre Cianjur (Kab. Cianjur, Kab. Bogor dan Kota Bogor)</td>
<td>-202 423 <-169 498 <-126 068</td>
</tr>
<tr>
<td>Subdivre Cirebon (Kab. Cirebon, Kota Cirebon, Kab. Majalengka dan Kab. Karanganyar)</td>
<td>111 417 122 722 183 727</td>
</tr>
<tr>
<td>Subdivre Indramayu (Kab. Indramayu)</td>
<td>327 709 367 254 340 207</td>
</tr>
<tr>
<td>Subdivre Karawang (Kab. Karawang, Kab. Bekasi dan Kota Bekasi)</td>
<td>35 681 28 908 29 907</td>
</tr>
<tr>
<td>Subdivre Subang (Kab. Subang dan Kab. Purwakarta)</td>
<td>289 544 281 410 312 324</td>
</tr>
<tr>
<td>Divre Jawa Barat (Propinsi Jawa Barat)</td>
<td>-480 417 -463 052 -451 301</td>
</tr>
<tr>
<td>Subdivre Serang (Propinsi Banten)</td>
<td>-314 325 -308 924 -293 271</td>
</tr>
<tr>
<td>Subdivre Jakarta Raya (Propinsi DKI Jakarta)</td>
<td>-1 320 253 -1 141 894 -1 093 791</td>
</tr>
</tbody>
</table>

Pengukuran Kinerja Rantai Pasokan Berdasarkan Metode Transportasi

1. Formulasi Model Transportasi

1.1. Formulasi Fungsi Tujuan

Disain jaringan transportasi sangat berperan berkat kinerja rantai pasokan melalui optimasi

Optimasi Model Transportasi ...[Gunah, et al.]
Gambar 2. Alternatif Transportasi Beras dari Subdivre Surplus Menuju Subdivre Defisit di Jawa Barat, DKI Jakarta dan Banten

Keterangan:
Distribusi beras dari Subdivre i ke Subdivre j
(i j)

X_{10} = Cirebon Bandung
X_{11} = Cirebon Serang
X_{12} = Cirebon Jakarta Raya
X_{13} = Cirebon Ciamis
X_{14} = Cirebon Serang
X_{20} = Indramayu Bandung
X_{21} = Indramayu Ciamis
X_{22} = Indramayu Serang
X_{23} = Indramayu Jakarta Raya
X_{30} = Karawang Cianjur
X_{31} = Karawang Serang
X_{32} = Karawang Jakarta Raya
X_{40} = Subang Bandung
X_{41} = Subang Serang
X_{42} = Subang Jakarta Raya
X_{43} = Subang Ciamis

SD Cirebon (1)
SD Indramayu (2)
SD Ciamis (3)
SD Karawang (4)
SD Serang (5)
SD Surabaya (6)
SD Jakarta Raya (7)

Persediaan untuk Penyalur (B)
Persediaan untuk Penyalur (K)
Persediaan untuk Penyalur (B)
Persediaan untuk Penyalur (K)
Persediaan untuk Penyalur (B)
Persediaan untuk Penyalur (K)
Persediaan untuk Penyalur (B)

SD Bandung (2)
Pengelola Lokal (3)
SD Cianjur (1)
SD Serang (5)
SD Jakarta Raya (7)

Persediaan untuk Penyalur (B)
Persediaan untuk Penyalur (K)
Persediaan untuk Penyalur (B)
Persediaan untuk Penyalur (K)
Persediaan untuk Penyalur (B)
Persediaan untuk Penyalur (K)
Persediaan untuk Penyalur (B)

Step 2. Hitung nilai D_{ij} untuk i = 1, 2, ..., r dan j = 1, 2, ..., p dengan menggunakan formula berikut:

\[D_{ii} = \left(\frac{M_{ij} - \alpha_{ij}}{M_{ij}} \right) \] (41)

Step 3. Hitung \(\alpha_{ij} \) dengan formula berikut:

\[\alpha_{ij} = \frac{\sum_{k=1}^{n} \sum_{j=1}^{m} c_{ik} \cdot \zeta_{ijk}}{\sum_{j=1}^{m} \sum_{k=1}^{n} c_{ik} \cdot \zeta_{ijk}} \] (42)

Kemudian, dicari solusi dengan formulasi masalah berikut:

Minimisasi \(D_{ij} = d^2 \)

Dengan kendala \(X \in F_0 \) di mana \(F_0 \) yang didefinisikan sebagai berikut

a. Untuk maksimisasi: \(\Pi_{ij} (M_{ij} - C_{ij} (X)) \cdot d^2 \leq 0 \)
b. Untuk minimisasi: \(\Pi_{ij} (C_{ij} (X) - M_{ij}) \cdot d^2 \leq 0 \)
c. Kendala Umum: \(|X_{ik}| \leq 1, \quad X_{ik} \geq 0, \quad k = 1, 2, ..., n \)

\(X^* \) adalah nilai fungsi tujuan yang diperoleh dengan mengoptimumkan tujuan ke-j kelompok ke-i. Kemudian hitung nilai \(X^* \) yaitu nilai maksimum dan minimum \(\alpha_{ij} \) dari setiap komol (kamus maksimisasi).

a. Jika semua kelompok puas dengan solusi tersebut, maka solusi kompromi telah tercapai.

b. Jika paling tidak ada satu kelompok belum puas dan ada paling tidak satu kelompok yang berkorban, maka proses dilanjutkan ke langkah 5.

c. Jika ada satu kelompok belum puas tetapi tidak ada satu kelompok yang mau berkorban, maka solusi kompromi tidak tercapai.

Step 5. Jika ada kelompok yang mau mengorbankan tujaunnya, maka didefinisikan \(\Delta Z^* \) yang merupakan besarnya tujuan \(Z^* \) yang boleh dikorbankan.

Step 6. Wilaaya solusi baru \(F_0 + 1 \) didefinisikan sebagai berikut:

a. \(X \in F_0 \)
b. Untuk maksimisasi: \(\Pi_{ij} (Z_{ij} - C_{ij} (X)) \cdot d^2 \leq 0 \)
c. Untuk minimisasi: \(\Pi_{ij} (C_{ij} (X) - Z_{ij}) \cdot d^2 \leq 0 \)
d. Untuk tujuan maksimisasi: \((C_{ij} (X) \geq Z_{ij}) \)
e. Untuk tujuan minimisasi: \((C_{ij} (X) \leq Z_{ij}) \)

\(Z^* \) tujuan yang dikorbankan;

\(Z^* \) nilai fungsi tujuan ke-j, kelompok ke-i, iterasi ke-q;

\(X \in F_0 \) kendala seperti sebelumnya dengan penyertaan seperti ditunjukkan dalam nilai \(P_0 \) seperti step 7.

Perlu ditambahkan bahwa kendala \(b \) dan c menjamin asumsi non-inferior sedangkan kendala d dan e menjamin asumsi pareto optimal.

Step 7. Tetapkan \(\alpha_{ij} = 0 \) untuk \(Z^* \) dan lanjutkan ke step 3. Hitung kembali \(\alpha_{ij} \) dan tingkatkan q sebesar 1.

HASIL DAN PEMBAHASAN

Model PMPF untuk Keob Agung yang diwakili oleh model petani PC yang memaksimumkan kasuutangan disajikan pada lampiran 1. Setelah model dapat dikembangkan, maka dillakukan optimasi untuk masing masing-masing tujuan yang di-run secara terpisah. Ringkasannya adalah proses tersebut disajikan dalam bentuk matriks payoff seperti tertera pada Tabel 2. Terlihat adanya perbedaan maupun persamaan antara pihak yang berkepentingan. Sebagai contoh adalah perubahan kepentingan antara petani kepekanan dengan pihak PG. Jika kepentingan petani kepekanan harus dimaksimalkan yang mencapai Rp 44.413 miliar, maka

Model Keterpan Infokta ... [Wayam]
Biaya transportasi (Tabel 8) antar subdivid dipengaruhi oleh tarif transportasi beras yang jumlahnya tergantung pada jarak tempat distribusi; masari keuntungan Divisi Transportasi Bulog; tarif bongkar/muat, serta PPN sebesar 10% dari total tarif angkutan. Bulog juga menetapkan biaya operasional pembelian dan pemeliharaan persediaan, yang nilainya sama besarnya di setiap subdivid. Elemen-elemen biaya operasional pembelian meliputi biaya pembangunan (opel age) dan penimbangan serta biaya survey. Elemen-elemen biaya operasional pemeliharaan persediaan meliputi biaya fumigasi, biaya sprying, dan biaya penyimpanan di gudang (Tabel 8).

Tabel 7. Daftar Biaya Transportasi dan Biaya Persediaan Beras antar Subdividu di Propinsi Jawa Barat, DKI Jakarta dan Banten (Rp/Ton)

<table>
<thead>
<tr>
<th>Dari</th>
<th>Ke</th>
<th>Cijanjur (1)</th>
<th>Bandung (2)</th>
<th>Ciamis (3)</th>
<th>Serang (4)</th>
<th>Jakarta (5)</th>
<th>Persediaan di gudang pemasok (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirebon (1)</td>
<td>111.098</td>
<td>95.472</td>
<td>95.472</td>
<td>116.677</td>
<td>111.177</td>
<td>11.764</td>
<td></td>
</tr>
<tr>
<td>Karawang (3)</td>
<td>95.472</td>
<td>113.127</td>
<td>95.472</td>
<td>81.486</td>
<td>99.193</td>
<td>11.764</td>
<td></td>
</tr>
<tr>
<td>Subang (4)</td>
<td>99.193</td>
<td>104.953</td>
<td>108.717</td>
<td>99.193</td>
<td>111.177</td>
<td>11.764</td>
<td></td>
</tr>
<tr>
<td>Pemanggung Loka (5)</td>
<td>8.315</td>
<td>8.315</td>
<td>8.315</td>
<td>8.315</td>
<td>8.315</td>
<td>11.764</td>
<td></td>
</tr>
<tr>
<td>Persediaan di gudang tujuan (B)</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan nilai biaya transportasi antar subdivid di atas dan biaya pemeliharaan (bentuk biaya yang muncul karena penyimpanan beras untuk keperluan penyimpanan dan sisa penyimpanan), maka fungsi tujuan untuk model transportasi beras Bulog Divre Jawa Barat dinyatakan sebagai berikut.

\[
\min Z = 95472X_{12} + 95472X_{13} + 156734X_{14} + 118617X_{15} + 99193X_{21} + 99193X_{23} + 136898X_{24} + 108717X_{25} + 95472X_{32} + 95472X_{34} + 95472X_{35} + 81486X_{41} + 99193X_{43} + 108717X_{44} + 99193X_{45} + 11764X_{46} + 11764X_{49} + 11764X_{410} + 11764X_{411} + 8315X_{412} + 8315X_{413} + 8315X_{414} + 8315X_{415}
\]

1.2. Formulasi Fungsi Kendala

1.2.1. Formulasi Fungsi Kendala di Sumber Pasokan

Distribusi beras setiap tahunnya dibuatkan oleh kapasitas terpasang gudang penyimpanan milik Bulog (Tabel 9).
peninggilan padi maupun pihak intermediat lainnya di kawasan tersebut. Dengan mutu gabah yang sangat baik, para pengumpul atau penggiling padi berdesa membeli gabah dari para petani lokal pada tingkat harga yang lebih tinggi dari tingkat harga dasar GKP, sehingga pada saat pembelian gabah dari para petani, Bulog Subdivive Ciamis seringkali mengalami kesusahan untuk memenuhi kebutuhan pengadaannya.

Setiap subdivive pemasok harus memiliki persediaan beras minimum agar kebutuhan pemenuhan distribusi beras untuk setiap saluran distribusi beras dalam masing-masing subdivive tetap dapat dipenuhi, sehingga Bulog menetapkan persediaan yang aman setiap bulannya, yang mampu memenuhi kebutuhan persediaan minimal selama tiga bulan. Berdasarkan penambatan kapasitas maksimum dan persediaan beras minimum di sumber pasokan, maka fungsi kendala model transportasi beras di lokasi surplus beras adalah sebagai berikut:

Penyimpanan beras Subdivive Cirebon
\[X_{a} \geq 48.269 \]

Penyimpanan beras Subdivive Indramayu
\[X_{a} \geq 34.141 \]

Penyimpanan beras Subdivive Karawang
\[X_{a} \geq 48.119 \]

Penyimpanan beras Subdivive Subang
\[X_{a} \geq 22.587 \]

Penyimpanan beras Lokasi Surplus Beras
\[X_{a}^1 + X_{a}^2 + X_{a}^3 \leq 153.116 \]

Kapasitas maksimum penyediaan beras oleh Subdivive Cirebon
\[X_{a}^1 + X_{a}^2 + X_{a}^3 + X_{a}^4 \leq 133.000 \]

Kapasitas maksimum penyediaan beras oleh Subdivive Indramayu
\[X_{a}^1 + X_{a}^2 + X_{a}^3 + X_{a}^4 \leq 82.500 \]

Kapasitas maksimum penyediaan beras oleh Subdivive Karawang
\[X_{a}^1 + X_{a}^2 + X_{a}^3 + X_{a}^4 \leq 106.950 \]

Kapasitas maksimum penyediaan beras oleh Subdivive Subang
\[X_{a}^1 + X_{a}^2 + X_{a}^3 + X_{a}^4 \leq 31.572 \]

Volume total penyimpanan (penyerapan dan persediaan) beras di Subdivive Cijawar, Subdivive Bandung dan Subdivive Ciamis secara berturut-turut adalah 26.090 Ton, 46.000 Ton dan 39.364 Ton. Volume

Subang
\[X_{a}^1 + X_{a}^2 + X_{a}^3 + X_{a}^4 + X_{a}^5 \leq 29.100 \]

1.2.2. Formulasi Fungsi Kendala di Lokasi Tujuan

Subdivive-subdivive Cijawar, Bandung, Ciamis, Serang dan Jakarta Raya mendapat beras dari penggiling di wilayah operasionalnya, subdivive-subdivive surplus di Jawa Barat, serta persediaan sisa penyulan. Subdivive-Subdivive Cijawar, Bandung, Ciamis dan Serang memperoleh pasokan beras dari KUD/ penggiling swasta dalam volume yang terbatas. Subdivive Jakarta Raya tidak melakukan penyerapan dari KUD atau penggiling lokal. Persamaan kendalanya disusun sebagai berikut:

Volume penyerapan beras di Subdivive Cijawar
\[X_{b} \leq 3.965 \]

Volume penyerapan beras di Subdivive Bandung
\[X_{b} \leq 10.436 \]

Volume penyerapan beras di Subdivive Ciamis
\[X_{b} \leq 6.495 \]

Volume penyerapan beras di Subdivive Serang
\[X_{b} \leq 11.916 \]

Volume persediaan di Subdivive Cijawar
\[X_{p} \leq 17.514 \]

Volume persediaan di Subdivive Bandung
\[X_{p} \leq 35.564 \]

Volume persediaan di Subdivive Ciamis
\[X_{p} \leq 22.593 \]

Volume persediaan di Subdivive Serang
\[X_{p} \leq 31.572 \]

Produksi Tebu Petani Dengan Tanaman PC
\[QSCFPC - PCY \times APFCij = 0 \]

Produksi Tebu Petani Dengan Tanaman Keperasan
\[QSCFRT - RTY \times APRTij = 0 \]

Produksi Tebu PG Dengan Tanaman PC
\[QSCPGPC - PCY \times APFCij = 0 \]

Produksi Tebu PG Dengan Tanaman Keperasan
\[QSCPGRT - RTY \times APRTij = 0 \]

QCSFPC = produksi tebu petani dari areal PC (Ton)
QCSFRT = produksi tebu petani dari areal keperasan (Ton)
QSCPGPC = produksi tebu PG dari areal PC (Ton)
QSCPGRT = produksi tebu PG dari areal keperasan (Ton)

Total produksi tebu untuk petani, PG, total produksi tebu di formulasi persamaan berikut:
\[QSCFPC + QCSFRT = QCSF = 0 \]
\[QSCPGPC + QSCPGRT = QCSPG = 0 \]
\[QCSF + QCSPG = QTCS = 0 \]

Berdasarkan kesepakatan antara petani dan PG, sistem bagi hasil yang berlaku sekarang adalah bahwa bagi hasil petani adalah 65% dari produksi, sedangkan sisanya adalah milik pabrik sebagai biaya pengolahan. Dengan demikian, bagi hasil petani di formulasi seperti persamaan berikut:

Bagian Gula Petani Dengan Tanaman Tebu PC (QFPCS, Ton)
\[0.65QFPCS = QFPCS = 0 \]

Bagian Gula Petani Dengan Tanaman Tebu Keperasan (QFRTS, Ton)
\[0.65QFRTS = QFRTS = 0 \]

Total Gula Yang Dimiliki PG (TQPG, Ton)
\[QPG + 0.35QFPCS + 0.35QFRTS = TQPG = 0 \]

Berdasarkan penentuan gula yang diperoleh dari tanaman PC, gula dari tanaman keperasan, dan gula yang diperoleh dari bagi hasil (biaya pengolahan) dari petani.

Produksi Gula Petani Dengan Tanaman PC (QFPC, Ton)
\[QFPC = APFCij \times hij \]

Produksi Gula Petani Dengan Tanaman Keperasan (QFRT, Ton)
\[QFRT = APRTij \times hij \]
AFC(jj) = areal tebu PC rakyat yang ditanam pada bulan i dan ditebang bulan ke j
AFRTTj = areal tebu keprasan rakyat yang ditanam pada bulan i dan ditebang bulan ke j

Ketentuan (a) dan (b) masing-masing menunjukkan adanya enam bulan tanam (mei sampai oktober) dan sembilan bulan giling (April sampai dengan Desember). Ketentuan (c) untuk menjamin bahwa umur tebu yang panen minimal 11 bulan sedangkan ketentuan (d) mengatakan bahwa umur tebu yang dipanen maksimum 17 bulan.

Sejalan dengan formulasi kendala areal tebu rakyat, kendala areal tebu untuk PQ baik yang dikelola BUMN maupun swasta diformulasikan seperti persamaan (4.43).

\[
\sum_{j} \text{APG}(j) + \sum_{j} \text{APGRTij} \leq \text{TAPG} \tag{11}
\]

\[
\sum_{j} \text{APG}(j) + \sum_{j} \text{APGRTij} - \text{TAPG} = 0 \tag{12}
\]

\[
\text{dimana:} \quad \text{TAPG} = \text{total areal tebu milik PG}.
\]

Sesuai dengan jumlah bulan tanam, maka ada enam kendala ketersediaan alat mekanis (i = 1, 2, ...,6). Dengan asumsi kebutuhan tenaga traktor adalah 0,5 hara kerja traktor per ha dan ketersediaan traktor adalah tan per bulan, maka keenam kendala ketersediaan traktor dinyatakan seperti persamaan (13) dimana tm adalah ketersediaan kapasitas alat mekanis di PG.

\[
\sum_{j} 0.5(\text{APG}(j)) \leq \text{tm} \tag{13}
\]

Ketersediaan tenaga penebang merupakan salah satu kendala dalam industri gula indonesis. Sesuai dengan jumlah bulan tebang, maka ada 10 kendala bulan tebang yang direpresentasikan oleh persamaan (14).

\[
\sum_{j} \text{kth}(\text{APG}(j) + \text{AFRTij} + \text{APGRTij}) \leq \text{TKth} \tag{14}
\]

\[
\text{dimana:} \quad \text{tkth} = \text{kebutuhan tenaga untuk tebang (orang/ha)}
\]

\[
\text{TKth} = \text{ketersediaan tenaga tebang (orang/bulan)}
\]

Sesuai dengan jumlah bulan tebang/giling, maka terdapat dua pilihan kendala tebang dan giling yaitu sepuluh kendala untuk kapasitas minimum (persamaan (15) dan sepuluh kendala untuk kapasitas maksimum (16). Seperti terlihat pada kedua persamaan tersebut, maka kapasitas minimum dan maksimum bervariasi antar PG

\[
\text{PCY} \times \text{APG}(j) \geq \text{Kmin} \tag{15}
\]

\[
\text{PCY} \times \text{APG}(j) \geq \text{Kmax} \tag{16}
\]

\[
\text{dimana:} \quad \text{kg} = \text{kecepatan kapasitas giling/pabrik untuk tebu PC (Ton/bulan)}
\]

\[
\text{Kmin} = \text{kapasitas giling minimum (ton/bulan)}
\]

\[
\text{Kmax} = \text{kapasitas giling minimum (ton/bulan)}
\]

\[
\text{PCY} = \text{produktivitas areal tebu PC (ton/ha)}
\]

\[
\text{RTY} = \text{produktivitas areal tebu keprasan (ton/ha)}
\]

Kendala lain berkaitan dengan kapasitas pabrik adalah jumlah hari giling minimum yang diperkirakan adalah 150 hari giling/tahun atau setara dengan dengan 5 bulan giling/tahun.

\[
\text{QSC} = \Delta S \times \text{Kmin} \tag{17}
\]

\[
\text{dimana:} \quad \text{QSC} = \text{total produksi tebu (ton)}
\]

Kendala lain yang perlu dirumuskan adalah kendala atau persamaan untuk menghitung produksi tebu masa-masa untuk petani dan PG yang masa-masa memiliki tebu PC dan tebu keprasan.

Kapasitas maksimum penerimaan beras di Subdivre Cianjur

\[
X_{11} + X_{12} + X_{13} + X_{14} + X_{15} = 26 090
\]

Kapasitas maksimum penerimaan beras di Subdivre Bandung

\[
X_{21} + X_{22} + X_{23} + X_{24} + X_{25} = 46 000
\]

Kapasitas maksimum penerimaan beras di Subdivre Ciamis

\[
X_{31} + X_{32} + X_{33} + X_{34} + X_{35} = 30 384
\]

Kapasitas maksimum penerimaan beras di Subdivre Serang dan Jakarta Raya

\[
X_{41} + X_{42} + X_{43} + X_{44} + X_{45} + X_{46} = 236 615
\]

Penggunaan sumber daya harus diatur dengan memperhatikan bahwa pendistribusian beras dilakukan ke Subdivre Serang dan Subdivre Jakarta Raya sedekat kebutuhan beras di Subdivre Serang, Subdivre Bandung dan Subdivre Ciamis (tanpa perlu terputus terpangkal).

1.3. Implementasi Pemodelan Transportasi Beras Optimum

Tabel 10. Volume Beras dan Biaya Transportasi yang Dikeluarkan per Pengiriman Beras

<table>
<thead>
<tr>
<th>Subdivre</th>
<th>Volume (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirebon</td>
<td>1 296</td>
</tr>
<tr>
<td>Karawang</td>
<td>4 611</td>
</tr>
<tr>
<td>Ciamis</td>
<td>83 435</td>
</tr>
<tr>
<td>Karawang</td>
<td>54 220</td>
</tr>
<tr>
<td>Subang</td>
<td>6 513</td>
</tr>
</tbody>
</table>

perlu melakukan penyerapan beras dari KUD/ penggiling lokal, masing-masing sebesar 3.965 Ton, 10.436 Ton, 6.495 Ton dan 11.916 Ton (Tabel 11).

Tabel 12. Perubahan Biaya yang Diakibatkan oleh Penambahan/ Penurunan Volume Beras

<table>
<thead>
<tr>
<th>Aktivitas Penyimpanan/ Penyederhan Biaya (Rp/Ton)</th>
<th>Volume (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penyimpanan di Subdivide Cirebon</td>
<td>48,369</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Indramayu</td>
<td>24,441</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Karawang</td>
<td>48,119</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Subang</td>
<td>22,597</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Cianjur</td>
<td>17,514</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Bandung</td>
<td>35,564</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Ciamis</td>
<td>26,359</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Serang</td>
<td>31,572</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Cirebon</td>
<td>3,653</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Bandung</td>
<td>10,652</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Ciamis</td>
<td>6,495</td>
</tr>
<tr>
<td>Penyimpanan di Subdivide Serang</td>
<td>11,916</td>
</tr>
</tbody>
</table>

Perubahan Biaya yang Masih Diperkenalkan Agar Tidak Mungkin Basis Solusi Optimal

<table>
<thead>
<tr>
<th>Aktivitas Pengadaan/ Penyederhan Penyimpanan per Lokasi Subdivide</th>
<th>Perubahan Biaya (Rp/Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengadaan di Subdivide Cirebon</td>
<td>-9,920</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Indramayu</td>
<td>-37,151</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Karawang</td>
<td>-19,444</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Subang</td>
<td>-132,623</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Cianjur</td>
<td>-11,764</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Bandung</td>
<td>-95,472</td>
</tr>
<tr>
<td>Pengadaan di Subdivide DJK Jakarta</td>
<td>-118,637</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Cirebon</td>
<td>-21,684</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Karawang</td>
<td>-48,915</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Subang</td>
<td>-31,208</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Cianjur</td>
<td>-124,308</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Bandung</td>
<td>-3,449</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Ciamis</td>
<td>-87,157</td>
</tr>
<tr>
<td>Pengadaan di Subdivide Serang</td>
<td>-110,322</td>
</tr>
<tr>
<td>Penerimaan sisa di Subdivide Cianjur</td>
<td>-120,859</td>
</tr>
<tr>
<td>Penerimaan sisa di Subdivide Bandung</td>
<td>-6,495</td>
</tr>
<tr>
<td>Penerimaan sisa di Subdivide Ciamis</td>
<td>-106,873</td>
</tr>
</tbody>
</table>

Dengan demikian, ukuran model adalah 7 tujuan dengan 67 kendala. Kendala lahan pada dasarnya terdiri dari kendala lahan secara total, kendala lahan untuk petani dan kendala lahan untuk PG.

Kendala Lahan Total:

TAF + TAPG ≤ ta (6)

DINAMA:

TAF = total areal tebu rakyat
TAPG = total areal tebu PG

ta = ketersediaan lahan untuk tebu di wilayah PG

Dengan kerangka berfikir bahwa suatu areal tebu ditanam pada bulan ke 1 dan ditebang/digiling pada bulan ke j, maka setiap komponen areal dapat diterjumakan sebagai areal yang ditanam pada bulan ke i dan ditebang bulan ke j (aij). Karena adanya perbedaan produktivitas dan biaya produksi antara tanaman PC dengan keprasan, maka areal tanaman dibedakan menjadi areal tanaman PC dan areal tanaman keprasan. Dengan demikian kendala lahan untuk petani disertakan dengan persamaan (4.41).

APFC + AFR + ≤ taf (9)

APFC + AFR + TAF = 0 (10)

dengan ketentuan:

i = 1, 2, ..., 6 (a)
j = 1, 2, ..., 9 (b)
i ≤ j (c)
i ≠ j (d)
j = 6 (e)

DINAMA:

ZQ = produksi gula Indonesia (Ton)
QPG = total produksi gula
ZGE = jumlah tenaga kerja
ZGKV = penerimaan pemerintah

dimana:

ZPG = gross margin PG
TQPG = total gula PG (produksi PG ditambah bagi hasil dengan petani)
TCPG = total biaya yang dikeluarkan PG
pgsc = harga di tingkat petani

Pengebahan sebagai salah satu pihak yang berperan penting dalam penentuan mutu tebu disampaikan memaksimalkan penerimaannya sebagai berikut:

Maks ZSS = w * TQSC(4)

Pemerintah pusat dan daerah disampaikan mempunyai tiga tujuan utama yaitu maksimisasi produksi gula (persamaan 4.36), maksimisasi lapangan kerja (persamaan 4.37), peningkatan penerimaan pemulihan dari pajak (persamaan 4.38).

Max Produksi:

ZQG = TQSC (5)

Max Tenaga Kerja:

ZGE = 2,0 (APFC + APGFC) + 1,2 (APFR + APRGT) (6)

Max Penerimaan Pemerintah:

ZGKV = PPN * QPG (7)

DINAMA:

ZQ = produksi gula Indonesia (Ton)
QPG = total produksi gula
ZGE = jumlah tenaga kerja
ZGKV = penerimaan pemerintah

dimana:

taf = ketersediaan lahan petani
ruang partisipasi bagi pihak-pihak yang berkepentingan sehingga didapatkan solusi kompromi.

METODE PENELITIAN

Penelitian ini bersifat studi kasus dengan mengambil lokasi PG kebon Agung, Malang Jawa Timur. Pemilihan lokasi ini didasari pertimbangan bahwa kebon Agung merupakan salah satu wilayah yang cukup representatif mewakili situasi masalah yang akan dialamiasi, yaitu berlokasi di Jawa dan adanya masalah dalam jadwal tanam dan tebang.

Formulasi Model

Penentuan jadwal tanam dan tebang, aspirasi dari pihak-pihak yang berkepentingan seyogyanya diberi ruang yang lebih leluasa. Hal ini dapat diwujudkan bila kerangka analisis yang digunakan secara eksplisit memasukkan proses negosiasi/partisipasi dalam penentuan keputusan tersebut (Contreras, 1985; Bare Dan Mendoza, 1980). Metode analisis atau pendekatan dengan fenomena dimana melibatkan banyak pihak yang berkepentingan dengan masing-masing tujuan tersebut diikuti sebagai kelompok Mutly Party Mutly Objective Mathematical Programming Model (MPMO). Pendekatan ini antara lain sudah mulai dikembangkan di Filipina sejak akhir tahun 1970-an (Bare et al., 1979; Bare dan Mendoza, 1980; Contreras, 1985).

Dalam menyusun atau mengembangkan model MPMO, maka ada lima tahapan yang umum ditempuh sebagai berikut:
1. Identifikasi pihak-pihak yang berkepentingan atau kelompok (interest groups);
2. Identifikasi kepentingan atau tujuan (objectives) masing-masing kelompok;
3. Identifikasi sumberdaya atau kendala dalam pencapaian tujuan;
4. Formulasi model riset operasi: Mutly Party - Mutly Objective Model;
5. Pencarian solusi kompromi (compromise solution) dari model.

Sesuai dengan tahapan penyusunan model MPMO untuk tingkat usahatani dan PG, maka tahap pertama adalah identifikasi kelompok yang mempunyai kepentingan terhadap industri gula. Dalam penelitian ini, kelompok yang mempunyai kepentingan terdiri dari (1) petani tebu, (2) pabrik gula, (3) penambang; dan (4) permentah. Secara garis besar, perumusan fungsi tujuan masing-masing pihak dirumuskan sebagai berikut.

Fungsi Tujuan

Tujuan utama petani adalah memaksimalkan tingkat pendapatan rata-rata mereka yang dalam hal ini diukur dengan Gross Margin. Karena ada perbedaan yang signifikan antara petani yang mengelola tanaman baru (PC) dengan petani yang mengusahakan tanaman kepan, maka fungsi tujuan petani dibedakan menjadi dua kelompok yaitu fungsi tujuan untuk petani yang mengelola tanaman kepan dan fungsi tujuan untuk petani yang mengelola tanaman PC.

Fungsi tujuan petani yang mengelola tanaman PC (ZFPC) dan yang mengelola kepan (ZFRT) masing-masing sebagai berikut:

Max ZFPC = pfgca*QFPCS – TCFPC (1)
Max ZFRT = pfgca*QFRTS – TCFRT (2)

DIMANA:
ZFPC = gross margin petani yang mengelola PC
ZFRT = gross margin petani yang mengelola kepan
QFPCS = bagian produksi gula petani yang mengelola PC
QFRTS = bagian produksi gula petani yang mengelola kepan
TCFPC = total biaya produksi untuk petani yang mengelola PC
TCFRT = total biaya produksi untuk petani yang mengelola kepan
pfgca = Harga gula yang diterima petani/PG

Perusahaan gula juga diasumsikan mempunyai tujuan memaksimalkan/um gross margin yang berbesar dari pengolahan tebu petani (bagi hasil) serta gross margin dari produksi gula. Maka ZPG = pfgca*TQPG – TCPG (3)

Tabel 13. Batas-Batas Biaya Transportasi Beras yang Masih Diperkenankan Agar Tidak Mempengaruhi Basis Solusi Optimum

<table>
<thead>
<tr>
<th>Jalan Distribusi Antar Subdivive</th>
<th>Biaya pada Kondisi Semula (Rp)</th>
<th>Biaya pada Kondisi Sekarang (Rp)</th>
<th>Peningkatan Biaya yang Diperkenankan (Rp)</th>
<th>Penurunan Biaya yang Diperkenankan (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cirebon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandung</td>
<td>95.472</td>
<td>13.641</td>
<td>81.708</td>
<td></td>
</tr>
<tr>
<td>Clamis</td>
<td>95.472</td>
<td>13.641</td>
<td>81.708</td>
<td></td>
</tr>
<tr>
<td>Serang</td>
<td>156.734</td>
<td>38.097</td>
<td>118.637</td>
<td></td>
</tr>
<tr>
<td>Jakarta Raya</td>
<td>118.637</td>
<td>38.097</td>
<td>80.540</td>
<td></td>
</tr>
<tr>
<td>Indramayu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandung</td>
<td>99.193</td>
<td>9.920</td>
<td>89.273</td>
<td></td>
</tr>
<tr>
<td>Clamis</td>
<td>99.193</td>
<td>9.920</td>
<td>89.273</td>
<td></td>
</tr>
<tr>
<td>Serang</td>
<td>136.889</td>
<td>28.172</td>
<td>108.717</td>
<td></td>
</tr>
<tr>
<td>Jakarta Raya</td>
<td>108.717</td>
<td>28.172</td>
<td>80.545</td>
<td></td>
</tr>
<tr>
<td>Karawang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirebon</td>
<td>95.472</td>
<td>113.641</td>
<td>120.859</td>
<td></td>
</tr>
<tr>
<td>Clamis</td>
<td>95.472</td>
<td>113.641</td>
<td>120.859</td>
<td></td>
</tr>
<tr>
<td>Serang</td>
<td>108.717</td>
<td>13.986</td>
<td>95.731</td>
<td></td>
</tr>
<tr>
<td>Jakarta Raya</td>
<td>108.717</td>
<td>13.986</td>
<td>95.731</td>
<td></td>
</tr>
<tr>
<td>Subang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandung</td>
<td>99.193</td>
<td>9.254</td>
<td>90.939</td>
<td></td>
</tr>
<tr>
<td>Clamis</td>
<td>99.193</td>
<td>9.254</td>
<td>90.939</td>
<td></td>
</tr>
<tr>
<td>Serang</td>
<td>108.717</td>
<td>13.986</td>
<td>95.731</td>
<td></td>
</tr>
<tr>
<td>Jakarta Raya</td>
<td>108.717</td>
<td>13.986</td>
<td>95.731</td>
<td></td>
</tr>
</tbody>
</table>

Perubahan Volume Distribusi Beras yang Masih Diperkenankan Agar Tidak Mengubah Kondisi Basis Optimum

Apabila perubahan volume distribusi beras lebih tinggi dari batas maksimum peningkatan atau penurunan volume distribusi beras yang masih diperbolehkan, maka perubahan terhadap kondisi basis optimum pun akan terjadi. Dalam distribusi beras Bulog Divre Jawa Barat, kondisi basis optimum tidak berubah apabila kapasitas pengadaan beras Subdivive Cirebon tidak lebih rendah dari 133.600 Ton. Peningkatan kapasitas pengadaan beras di Subdivive Indramayu, Subdivive Karawang, dan Subdivive Subang sama-sama tidak

Optimal Model Transportasi ... (Sudah, et al.)
Boleh lebih dari 83.435 Ton. Volume penerimaan beras dari Subdivisn Cianjur, Subdivisn Bandung, Subdivisn Ciamis dan Divre Jawa Barat (Subdivisn Karawang), sehingga secara kumulatif tidak ada meningkatkan beban bahan transportasi beras antardivre.

Pembagian Hasil Pemeliharaan Transportasi Beras Bulog Divre Jawa Barat dengan Kondisi Rilinya

Model transportasi beras Subdivisn Cianjur cukup mewakili gambaran kondisi pendistribusian beras (move in) ke Subdivisn Cianjur. Meskipun demikian, disarankan agar Subdivisn Cianjur memenuhi

<table>
<thead>
<tr>
<th>Penyimpanan/ Penerimaan di Lokasi Surplus dan Defisit</th>
<th>Biaya Kendali Semula (Rp)</th>
<th>Peningkatan Biaya yang Masih Diperkenankan (Rp)</th>
<th>Penurunan Biaya yang Masih Diperkenankan (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penyimpanan beras di Subdivisn Cirebon</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivisn Indramayu</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivisn Karawang</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivisn Subang</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Cianjur</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Bandung</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Ciamis</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Serang</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Cisaragempa</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Sijunjung</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Sibakura</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
<tr>
<td>Persediaan beras asal di Subdivisn Semarang</td>
<td>11.764</td>
<td>11.764</td>
<td>11.764</td>
</tr>
</tbody>
</table>

Model Keterpaduan Jadual Tanam dan Tebang Tebu: Pendekatan Kompromi

Wayan R. Susila* dan M. Parulian Hutagato**

*Afdi Peneliti Uma ra Pemberian Kebijakan Indonesia, Bogor
**Dosen Departemen Ilmu Ekonomi PNM dan Pascasarjana Institut Pertanian Bogor

ABSTRAK

One of the main problems causing a setback of Indonesian sugar industry is inefficiency in farm and plant levels because of lack of integrated production system. In response to this problem, this study is aimed at building a model of integrated production systems between farm and sugar plant activities through an integrated planting and harvesting schedule. The approach used is a compromise approach using a multi party multi objective (MMPMO) models. The results of this study show that productivity in farm and sugar plant can be improved by developing an integrated production system through an integrated planting and harvesting schedule. With supervisions and model modification, the MMPMO model can be applied, especially for sugar plamation in Java.

Kata Kunci: Sugar Industry, MMPMO Model, Tebu, Model Kompromi

PENDAHULUAN

Latar Belakang Masalah

Tujuan Penelitian

Berdasarkan permasalahan masalah tersebut, maka tujuan penelitian ini adalah menyiapkan alternatif keterpaduan sistem produksi tebu/ha jadwal tanam dan tebang/giling terpadu antar petani dan PG. Metode analisis yang digunakan adalah menganalisis kedalaman...
Tabel 15. Batas-Batas Volume Distribusi/Penyimpanan/Penyerapan yang Masih Diperkenankan Agar Tidak Mempengaruhi Basis Solusi Optimum

<table>
<thead>
<tr>
<th>Kapasitas Penerimaan/Penyediaan Per Subdivir</th>
<th>Volume pada Kondisi Semula (Ton)</th>
<th>Peningkatan Volume yang Masih Diperkenankan (Ton)</th>
<th>Penurunan Volume yang Masih Diperkenankan (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapasitas penyediaan beras di Subdivir Cirebon</td>
<td>133 000</td>
<td>Infinit</td>
<td>0</td>
</tr>
<tr>
<td>Kapasitas penyediaan beras di Subdivir Indramayu</td>
<td>106 550</td>
<td>83 435</td>
<td>0</td>
</tr>
<tr>
<td>Kapasitas penyediaan beras di Subdivir Karawang</td>
<td>29 100</td>
<td>83 435</td>
<td>0</td>
</tr>
<tr>
<td>Kapasitas penyediaan beras di Subdivir Subang</td>
<td>26 990</td>
<td>0</td>
<td>4 611</td>
</tr>
<tr>
<td>Kapasitas penyediaan beras di Subdivir Ciamis</td>
<td>46 000</td>
<td>0</td>
<td>35 564</td>
</tr>
<tr>
<td>Kapasitas penyediaan beras di Subdivir Ciamis</td>
<td>30 384</td>
<td>0</td>
<td>1 296</td>
</tr>
<tr>
<td>Kapasitas penyediaan beras di Divre DKI Jakarta</td>
<td>235 151</td>
<td>0</td>
<td>83 436</td>
</tr>
<tr>
<td>Penyimpanan beras di lokasi surplus</td>
<td>153 116</td>
<td>0</td>
<td>Infinit</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivir Cirebon</td>
<td>48 269</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivir Indramayu</td>
<td>34 141</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivir Karawang</td>
<td>48 119</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivir Subang</td>
<td>22 587</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivir Cianjur</td>
<td>10 436</td>
<td>35 564</td>
<td>0</td>
</tr>
<tr>
<td>Penyimpanan beras di Subdivir Cianjur</td>
<td>3 965</td>
<td>4 611</td>
<td>0</td>
</tr>
<tr>
<td>Persediaan beras sis di Subdivir Cianjur</td>
<td>16 649</td>
<td>4 611</td>
<td>0</td>
</tr>
<tr>
<td>Persediaan beras sis di Subdivir Cianjur</td>
<td>3 556</td>
<td>Infinit</td>
<td>0</td>
</tr>
<tr>
<td>Persediaan beras sis di Subdivir Ciamis</td>
<td>11 916</td>
<td>83 435</td>
<td>0</td>
</tr>
<tr>
<td>Persediaan beras sis di Subdivir Serang</td>
<td>22 594</td>
<td>1 296</td>
<td>0</td>
</tr>
<tr>
<td>Persediaan beras sis di Subdivir Serang</td>
<td>31 572</td>
<td>83 435</td>
<td>0</td>
</tr>
</tbody>
</table>

Beras yang ditransportasikan masuk ke Subdivir Ciamis (move in) adalah 1 296 Ton, atau mendekati rata-rata pengaduan beras riil antarsubdivir, sebesar 1 432 Ton. Kondisi tersebut cukup mewakili gambaran kondisi pendistribusian beras masuk (move in) ke Subdivir Ciamis.

Volume beras riil yang dikeluarkan oleh Bulog Subdivir Cirebon lebih rendah daripada volume pengiriman beras (move out) optimal yang dihasilkan melalui pemodelan transportasi (83 436 Ton), sehingga tampak bahwa Subdivir Cirebon lebih banyak melaksanakan penyimpanan dibandingkan dengan pendistribusian beras. Persediaan beras di gudang-gudang Bulog Subdivir Cirebon rata-rata memenuhi distribusi lokal di wilayahnya selama lebih dari 18 bulan ke depan. Kondisi tersebut berbeda dengan kondisi hasil pemodelan, dimana kondisi optimal masih dapat dilakukan untuk mendistribusikan sekitar 62% dari kapasitas penyimpanan maksimum ke seluruh Subdivir Jakarta Raya. Jika hal tersebut dilakukan, maka persediaan beras lama di gudang-gudang Bulog Subdivir Cirebon dapat lebih cepat dигunakan oleh persediaan beras baru.

Volume beras yang didistribusikan keluar dari Subdivir Indramayu menuju divre lain (move out nasional) pada tahun yang sama mencapai 10 000 Ton. Kondisi tersebut berbeda dengan kondisi hasil pemodelan, dimana kondisi optimal masih dapat dilakukan untuk mendistribusikan sekitar 58% dari kapasitas penyimpanan maksimum ke seluruh kemudian menuju Subdivir Jakarta Raya. Dilain pihak, persediaan beras di gudang-gudang Bulog Subdivir Indramayu rata-rata dapat memenuhi distribusi lokal di wilayahnya selama lebih dari 20 bulan ke depan.

Volume beras yang didistribusikan dari Subdivir Subang menuju subdivir lainnya di Jawa Barat adalah 10 800 Ton, sedangkan volume beras yang didistribusikan keluar dari Subdivir Subang menuju Optimal Model Transportasi...[Gelis, et al.]

125

IMPLIKASI MANAJERIAL

KESIMPULAN DAN SARAN

DAFTAR PUSTAKA

IMPLIKASI MANAJERIAL

KESIMPULAN DAN SARAN

DAFTAR PUSTAKA

