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ABSTRACT 
Programming in embedded lighting domain is commonly done 
using the C language with the Object Oriented programming 
paradigm at Philips Lighting. However applying that paradigm in 
combination with the low-level language like C creates a 
conceptual gap between the requirements and design and actual 
implementation. This results in reduced source code readability 
and maintainability. Functional programming paradigm was 
expected to alleviate this problem by reducing the gap and 
enhancing readability. A proof of concept was built on an 
advanced, IP-connected, digital LED driver (Power over Ethernet) 
device. The actual code was inspired by the rule-based decision 
engine concept developed by EnLight. 

Based on the hardware specifications of the device, the existing 
code to communicate with, and adherence to the functional 
paradigm, Lua was chosen to build the proof with. The 
implementation of the decision engine was altered to exploit 
characteristics of functional programming, such as representing 
actions as functions rather than as an enumeration value, using the 
common filter function to replace loops, and many more.  

The proof of concept was able to run in the device. It was also 
relatively more readable and maintainable. However, it was 
slightly slower, less memory efficient, and less capable in dealing 
with low-level problems such as garbage compared to the engine in 
C language.  

Keywords: Functional programming paradigm, Decision 
engine, Embedded, Lighting  

1. INTRODUCTION 
In developing embedded programs to operate lighting components, 
Philips Lighting uses C language. Meanwhile, requirements in 
program designs are defined as a set of functions, and translation 
to the software implementation creates some understanding gap. 
Philips attempted to close this gap using the object-oriented 
paradigm. However, compounded with fact that C is not designed 
for object-oriented paradigm, implementation results in boiler 
plates and verbose code, reducing readability. As a program gets 
more complex, maintainability rapidly drops.  

The functional programming paradigm then draws the interest of 
Philips Lighting. It is expected that using said paradigm the gap 
between the requirements and implementation can be reduced. 
Boilerplate codes can be removed, along with overall reduction of 
code length. This could lead to fewer points of failure, less code to 
test, and overall increased maintainability.  

However, there is also a possibility that the functional paradigm is 
inapplicable in the embedded domain. All of these aspects needs 
some dedicated research to uncover, which was the reason for this 
work. A proof of concept was built on an embedded hardware, 
starting with Power over Ethernet (PoE) device from Philips. It 
was based on a part from the EnLight Project, a rule-based 
decision engine. 

2. COMPONENTS 
Important components of this work are the hardware device on 
which the proof of concept is built, the functional programming 
paradigm itself and the language used, and the decision engine as 
the proof of concept. 

2.1 Embedded Hardware Device 
An embedded device used to control luminaire wirelessly was 
provided to build the proof of concept on. It uses the 
STM32F427VG microcontroller. Highlights are 1024kB flash size 
and 256kB RAM. Software code are in C, using a simple operating 
system OpenRTOS. A part of C standard libraries is available in 
the device. Several mandatory modules of the device are modules 
for memory management and circuit board control. Other optional 
modules are event handler, IP stack, ZigBee wireless protocol, 
LED driver, TFTP server and file I/O utilizing the flash memory. 

2.2 Functional Programming Paradigm 
Functional Programming Paradigm was based on a formal system 
called lambda calculus, devised by Alonzo Church in the 1930’s as 
a model for computability, along with Turing Machine and 
recursive function theory. It is mainly a system for manipulating 
lambda expressions, which could be a name, a function, or a 
function application [5].  

The first actual functional programming language, was LISP, which 
is also the second oldest programming language still in use from 



1958. Despite not actually being originated from it, all recent 
versions of LISP are lambda calculus based. Multiple other 
functional languages follows the development of functional 
programming, such as ISWIM, ML, Miranda, and Haskell, which 
is the latest well known purely functional programming a language. 
Certain characteristics of functional programming took form 
between them, including lazy, higher order, polymorphically 
typed, pattern matching, and list comprehensions. [6].  

Due to its stateless nature of the paradigm, input and output are 
handled in a more complicated way and may vary between 
functional languages. Current research are trying to utilize the 
stateless nature to better handle parallel programming. The 
potential of using the paradigm for certification and proving 
correctness of a program is also being observed [1]. 

Ten programming languages capable for functional programming 
were examined at the beginning: F#, Haskell, Scala, Scheme, 
Clojure, OCaml, Erlang, Groovy, Lua, and MATLAB. Based on 
the hardware specifications of the embedded device, the chosen 
language must be able to run with very low memory and disk 
space and to communicate with C code. It is also preferable for the 
chosen language to be able to handle input and output easily, as 
well as having low building complexity. 

Among the ten languages, Lua was chosen to build the proof of 
concept with. It has the smallest size, and being embeddable, 
communicates easily with C language [4]. Being basically a set of 
C libraries, it is also built by simply including these libraries along 
with the actual hardware device’s source code.  

2.3 EnLight Project Rule-Based Engine 
The EnLight Project was executed by a consortium of 27 
companies from 2011 to 2014. The main goal was to develop a 
next generation energy efficient and intelligent lighting systems. 
Said system is based on networked luminaires, each are capable to 
adjust to their own sensory inputs. Each module is specifically 
programmed to achieve high efficiency and decoupling, as well as 
providing special functionalities required by the project. With this 
distributed control, the pilots achieved 40-80% energy savings, 
with the same or better user comfort [7]. 

One vital building block for the luminaire’s intelligence is a 
programmable local rule-based decision engine inside the embedded 
controller, alongside a rule storage. Each rule consists of a 
triggering event, an optional condition, and one or more actions. 

The engine works by receiving events, consisting of an enumerated 
event type and source MAC address, as well as arbitrary amount 
of integer parameters. Each rule inside the storage is then checked 
one by one, whether they have a matching address and event type. 
If they have a special condition, it will also be evaluated. 
Condition can check whether a luminaire level is currently 
in/active, compare two integer arguments, or check multiple sub-
conditions using logic gates. If a rule is matched and its condition 
evaluated into true, all actions inside it will be executed. The 
engine will then move on to match and evaluate the next rule. 

There are also a large variety of possible actions, such as 
configuring the luminaire, setting up an internal variable or time, 
generate a new event, or de/activate luminaire levels. Levels 
themselves are virtual settings of luminaire. The logical luminaire 
component can have multiple levels of luminaire configuration, and 
the highest level active will affect the actual physical luminaire 
settings.  

 

As the block diagram in Figure 1 could show, the rule storage is 
separated from the engine. To reflect this, the program built in Lua 
also have two separate scripts, one for the engine and one for the 
rules. 

3. IMPLEMENTATION 
Before being able to integrate Lua into the embedded device to 
start the implementation, several modifications must be done on 
both Lua and the device. Most optional modules of the device was 
turned off to free up memory, and allocated heap and stack were 
increased to use the entire 256 kB RAM. Inside the Lua C 
libraries, all references to FILE stream were deleted, as did all 
functions that rely on it. The same holds true for several other 
streams and functions, such as fwrite, setlocale, stdin, stdout, and 
stderr. As a result, three optional Lua libraries, I/O, Debug, and 
OS were deleted as whole, along with several functions dealing 
with printing, error logging, and files. Additionally, memory 
functions inside Lua function l_alloc were replaced with equivalent 
functions available for the hardware device. Meanwhile, all Lua 
optional libraries, excluding table library, were not loaded to 
reduce the interpreter memory, leaving only the base and table 
library.  

All this modifications allows Lua to run inside the hardware 
device. As a consequence, however, the ZigBee module needed to 
wirelessly control luminaires was turned off. The device was also 
only able to process IP packets for TFTP server and not for the 
event handler. To compensate, onboard LEDs were used as 
actuators, and an internal task was set to periodically fire events 
into the device itself as input. Also, since FILE stream are 
removed, the scripts are loaded into Lua as strings instead. The 
rule scripts, which is relatively small, can be loaded through the 
TFTP server and stored in flash memory, while the larger engine 
script are included along with the C source code as C-string object. 

Figure 1 EnLight Embedded Controller Block Diagram 



3.1 Functional Practices  
There were several notable common functional programming 
paradigm practices frequently used in building the new decision 
engine. The basic one was immutable variables and absence of side 
effects. Other than returning the requested value, any statement 
and function must not change any variable. A variable, once given 
value, never change. Whenever a new data is needed from an old 
one, a new instance variable is created with the value of modified 
old data. The old data itself is unchanged. This allows functions to 
become referentially transparent: being provided the same input, a 
function will always provide the same output. While this practice 
could not be enforced entirely, as the luminaire output and rule 
storage were both global states, it was applied to as many 
variables inside functions as possible. 

The next one was first-class functions, where functions are treated 
as normal variables: functions can be passed as arguments, 
returned, assigned, stored in data structures, and created at 
runtime, like other primitive values such as integer or character. 
This allows for higher-order function: a function that receives 
another function as parameter or returns one. This was extensively 
used in the implementation. Instead of using type enumeration and 
branching construct to decide which function to use for a certain 
type of condition and action, references to the function itself are 
stored to identify the condition and action types. The engine then 
send the stored parameters inside the rules to these function 
references when evaluating conditions or executing actions. 

After that was array functions, some common functions provided 
specifically to manipulate arrays. One aspect that functional 
paradigm avoid is iteration. In addition to what the iteration is 
trying to do, the presence of either loop counter or variable used 
as control statement already uses mutable data. Since iterations 
mostly deal with the manipulation of data arrays, these functions 
are used to replace them. They generally receive an array and 
another function as parameter, along with other needed data. Such 
functions do not exist in Lua, but they can be manually created 
[2]. During the implementation, four kinds of array functions were 
created: each (applying a function to each array element), reduced 
(reducing an array to a single value using provided function), filter 
(return another array containing only elements that is filtered by 
the provided function), and map (return another array with each 
elements transformed by the provided function). These four 
functions were used to replace most loop constructs of the engine. 
The filter function in particular is used to evaluate condition of 
rules. Due to how it works, rules are all evaluated at once instead 
of one by one. 

For array manipulation iterations that are not solved immediately 
with array functions, recursions are used. Tail call optimization is 
also important to prevent stack overflow from happening, 
especially in a resource constrained device such as the one being 
used. Since most loops were already replaced with array 
functions, only one was left and was replaced by a recursive 
function. 

There were also other practices examined but then discarded 
because its usage was inappropriate in the context, or the chosen 
language does not support them. Currying transforms a function 
that takes multiple arguments into a function that takes just a 
single argument and returns another function if any arguments are 
still needed. Composition pipelines the result of one function to 
the input of another, creating a single function composed from two 
or more. Benefits of both of these practices are rather insignificant 
compared to the amount of memory needed in the resource 
constrained device. Lazy evaluation, delaying the evaluation of an 
expression until its value is needed, is not supported by Lua. So 
does pattern matching. 

3.2 Other Conversions 
There were several other conversions from the original EnLight 
engine to the new one that were unrelated to functional 
programming paradigm but were necessary due to limitations in 
Lua or to take advantage of several features. Rules, which are a set 
of data, were loaded using a callback technique in which all data are 
passed as a parameter to a loading function [3].  

Hash tables were used to represent both objects and arrays. The 
rules in particular were no longer stored sequentially by their 
triggering event. Instead the new engine stores the rules in hash 
table based on trigger. When matching rules with events, instead of 
iterating through the array and matching the content inside the 
rule, the engine will use the trigger event on the hash table as key 
to obtain a list of rules associated with that event. Event 
parameters were stored in a global table instead of passed between 
all functions in the original engine. The new functions could access 
them, but they were more readable with one less parameter. All 
integer parameters and arguments were signed 32 bits integer. Lua 
only has one type of integer, thus unable to differentiate integer 
types as in the original engine. To ensure integer division also 
returns an integer, the “//” operator was used. The error handling 
was extended to also remove rules which causes error during 
runtime, instead of just logging them. 

Due to how Lua deals with variable naming and strings, temporary 
variables across functions were given same names to save memory. 
The names were also relatively short in length. This was later 
toned down due to oversimplification making the script more 
difficult to read. 

3.3 Special Features Used From Device 
Due to the differences between the hardware device used by 
EnLight and the one used in this work, the engine had to be 
modified to compensate for missing features from the original 
device. The engine was made running alongside the event handler 
module to be able to receive events that were fired internally. The 
device used in this work seemed incapable of detecting MAC 
address, so IPv6 address were used to determine source of event. 
It was also difficult to implement a class with array of bytes in 
Lua, so they were represented as strings. To save memory usage, 
the new engine did not involve logging process. There were also 
less event types and luminaire configuration action types as they 



were not supported by the device used. The new device also did 
not have an internal clock, so set time action was not supported. 

One major modification was the usage of timer for event 
generation action and level timeout. The timer in the used device 
was much more limited compared to the one in the original engine. 
First, each timer can only fire an event once before having to be 
reactivated manually. Second, timer must be created on startup, 
and the fired event cannot be changed. Third, event fired by timer 
cannot carry any data. In the original engine, whenever a generate 
event and timeout was instructed, all data was passed to the timer 
module to be managed. This is not possible due to the limitations 
above. The new decision engine was made responsible for 
internally storing data for event generation and level timeout inside 
a hash table. The timer only needed to fire its own unique event, 
an enumerated number. When this number was sent to the engine, 
it was used as a key to find the appropriate data from the hash 
table to generate the event or trigger the timeout. 

4. EVALUATION 
Two aspects were evaluated from the decision engine: 
performance, to measure the capability of the new engine, and 
readability, which in turn could reflect maintainability. 

4.1 Performance Evaluation 
Using between one to three actions for each event, the new engine 
takes between 9-14 milliseconds for each processed event. By 
default, event handlers in the embedded device are restrained to 
take at most 10 milliseconds to process an event. 

For memory requirements, creation of a Lua state in C takes 3480 
bytes, the base and table library take 3288 bytes, and the engine 
needs 40664 bytes. The memory needed for rule varies depending 
on the amount of rules loaded. Eight rules, for example, requires 
9160 bytes. Meanwhile, 24 rules require 27984 bytes and 25 rules 
require 29064 bytes. Extrapolating this calculation into a chart will 
yield a linear chart for rule memory usage, shown in Figure 2. One 
rule would need 1200 bytes on average.  

 

There was a problem regarding garbage that prevents testing of 
higher number of rules. The automatic garbage collection of Lua 

was too slow, it did not run on certain number of events and run 
after several, causing processing time to rise to up to 20 
milliseconds. The garbage collector had to be run manually to 
achieve consistent processing time. Also, right after the loading of 
the rules, the engine will accumulate a large amount of garbage, up 
to 22 kilobytes when using 25 rules. While this garbage can be 
collected manually to allow runtime memory needs, it completely 
exhausted the memory, preventing more rule from being loaded. 

4.2 Readability Evaluation 
A small survey was held with 40 people by showing them two 
rule scripts. The first script was an original EnLight rule script in 
XML format from EnLight project. The second was a rule script 
in Lua made to be similar in functionality with that original script. 
These people were then asked which format was more readable, 
understandable, and preferable to write with. 

A majority, 33 of them, said that the new script is more readable, 
but only 19 agreed it is more understandable. Since the new rule 
script involves much less characters, they are faster to read. 
However, this also leads to lack of overview and sense of 
completeness. Participants who prefer reading XML were used to 
deal with XML. They criticized the amount of curly brackets 
involved in the new script.  

Lastly, 24 preferred to write in the new script’s format. Some 
participants pointed out that less characters means less room for 
error and less parsing power needed for the program. New script’s 
simplicity might help new users in learning the format. 
Meanwhile, participants who preferred to use XML mentioned 
that, since XML is a standardized format, it is easier to find 
people who are already familiar with XML and need no training. 
Presence of standard also allows for “safer” feeling when using 
XML format.  

The most common suggestion for the new rule script was 
standardization, particularly to JSON. The new format is close to 
JSON format. Standardization allows for syntax checker and 
finding experienced people. If JSON schema is used, then clear 
layout will also be achieved. Other common suggestion was 
providing comments to better describe the rule-script. 

5. CONCLUSION 
It is possible to use the functional programming paradigm in the 
embedded lighting domain. However, some practices are less 
exploitable in this domain compared to other possible domains, 
which ideally involves more data arrays and less states. If 
communication with existing C-code is mandatory, Lua should be 
used. Said existing code slightly limits functional programming. 
The functional paradigm creates a more readable new decision 
engine. However, it is slower and consumes more memory for 
equivalent functionality in original C language. Due to high-level 
characteristic of the functional language, memory management 
such as garbage collection and loading from flash is difficult. Using 
a less popular standard in the new program could also lower 
interest and understandability. 

Figure 2 Calculation Chart of Rule Memory Usage 



6. REFERENCES 
[1] Barendregt, H. P., Manzonetto, G., and Plasmeijer, M. J. The 

imperative and functional programming paradigm. in Cooper, 
B. and van Leeuwen, J. ed. Alan Turing — His Work and 
Impact, Elsevier, Boston, 2013, 121-126. 

[2] Chisholm, J. A Functional Introduction to Lua. Pragpub: The 
First Iteration, 47. 2013. 11-17.  

[3] Ierusalimschy, R. Programming in Lua. Lua.Org, Rio de 
Janeiro, 2013.  

[4] Lua. 2012. About. URI= http:// www.lua.org/about.html. 

[5] Michaelson, G. An introduction to functional programming 
through Lambda calculus. Dover Publications, Mineola, 
N.Y., 2011.  

[6] Turner, D. A. Some History of Functional Programming 
Languages. in 13th International Symposium, TFP 2012, (St. 
Andrews, United Kingdom, 2012), Springer Berlin 
Heidelberg, 1-20. 

[7] van Tujil, F., James, L., Creusen, M., and Stalpers, M. 
EnLight Project Outcomes. LED Professional Review, 48. 
2015. 66-79. 

 


	1. INTRODUCTION
	2. COMPONENTS
	2.1 Embedded Hardware Device
	2.2 Functional Programming Paradigm
	2.3 EnLight Project Rule-Based Engine

	3. IMPLEMENTATION
	3.1 Functional Practices
	3.2 Other Conversions
	3.3 Special Features Used From Device

	4. EVALUATION
	4.1 Performance Evaluation
	4.2 Readability Evaluation

	5. CONCLUSION
	6. REFERENCES

