PENGARUH KONDISI OPERASI TERHADAP KONVERSI LIMBAH TANDAN KOSONG KELAPA SAWIT (TKKKS) PADA PROSES HIDROTERMAL

THE EFFECT OF OPERATION CONDITIONS ON THE CONVERSION OF PALM OIL EMPTY FRUIT BUNCH (EFB) IN HYDROTERMAL PROCESSING

R. Sarwono, A.S.Putra, dan Y. Sudiyani
Pusat Penelitian Kimia - Lembaga Ilmu Pengetahuan Indonesia (LIPI)
Komplek PUSPIPTEK, Serpong Tangsel (15314)
Email: Racht014@lipi.go.id

ABSTRAK
Selulosa merupakan polimer yang dihasilkan oleh makhluk hidup terutama tumbuhan yang memiliki jumlah yang sangat besar, dan sebagian besar menjadi limbah, seperti limbah pertanian, bekasun dan sampah kota. Limbah tersebut selama ini belum dimanfaatkan dengan baik. Biasanya dipakai sebagai bahan bakar dengan nilai calor yang rendah. Pengurangan limbah TKKS akan didapatkan bermanfaat bagi komunitas yang mempunyai nilai lebih seperti glukosa, asam leivulat, eritosa dan bahan bakar cair dan gas. Proses hidrotermal mampu mengurakan limbah TKKS menjadi molekul kecil sebagai bahan bakar cair dan gas. Hidrotermal menggunakan media air yang berfungsi sebagai pelarut dan reaktan. Perubahan limbah TKKS dipengaruhi oleh kondisi operasi (tekanan, temperatur) jenis katalis, waktu reaksi, pengaduk dan rasio air dan padatan. Reaksi yang terjadi pada proses hidrotermal meliputi reaksi liquefaksi, hydroliisis, dehydrasi, decarboxyliasi, kondensasi, aromatisasi, dan polimerisasi. Hasil perubahan TKKS berupa padatan biochar, zat terlarut dalam air, dan gas. Umpan TKKS 1,8% memberikan konversi sekitar 63%, sedangkan pada konsentrasi katalis Na2CO3, 0,5% memberikan konversi yang cukup tinggi sekitar 75%, pada temperatur operasi 400 °C memberi konversi sekitar 73%, pada waktu reaksi 3 jam memberi konversi sekitar 70%, sedangkan tekanan awal gas N2 tidak banyak berpengaruh terhadap konversi TKKS.

Kata kunci : TKKS, perurakan, konversi, hidrotermal, bahan terlarut, air, gas.

ABSTRACT
Cellulose is a polymer that produced in the living thing mainly from plantation with huge in amount, and also the majority from which is left as waste such as agricultural, forestry, food industries and municipal solid waste. Those wastes were not utilized properly yet, commonly used as a fuel with lower calorific value. Degradation of empty fruit bunches (EFB) of palm oil yielded many kind of valuable chemicals such as glucose, levulinic acid, eritrose, and liquid fuel and gas. EFB is lignocellulosic waste that can be degraded into smaller molecule that can be used as liquid and gas fuel fraction. Hidrothermal used water as a medium that used as solvent and reactant. EFB degradation is influenced by operation condition such as temperature, pressure, catalyst, reaction time, stirring, and ratio of liquid and solid. The hydrothermal process reaction involved such as liquefaction, hydrolysis, dehydratisiation, decarboxylation, condensation, aromatisation, and polymerisation. EFB degradation resulted solid as biochar, organic water soluble and gas. EFB concentration of 1,8% resulted 63% conversion, catalyts Na2CO3, 0,5% resulted 75%, temperature operation of 400 °C gave 73% conversion, reaction time 3 hours gave 70% conversion, initial pressure of N2, gas was not significantly influence to the EFB conversion.

Keywords : EFB, degradation, conversion, hydrothermal, water soluble, gas.

PENDAHULUAN
Tandan kosong kelapa sawit (TKKS) merupakan limbah biomasa yang jumlahnya sangat banyak yang dihasilkan dari industri kelapa sawit. Penyusun utama TKKS adalah selulosa, hemi-selulosa dan lignin. Selulosa merupakan rantai monomer D-glukosa yang terikat dengan ikatan 1,4-glukosidik dengan rantai lurus, dengan formula glukosa (C6H12O6)n. Sedangkan Lignin disusun oleh monomer katekol yang mempunyai gugus OH, dengan formula C6H11(OH). Hemiselulosa merupakan kopolimer dari karbohidrat unit (pentosa, arabinosa, xyloasa, hexosa, galactosa, dan manosa) yang tersusun secara bercabang tiga dimensi.10

Produksi kelapa sawit Indonesia mengalami kenaikan dari 23,6 million metric tons (mmt) pada tahun

TKKS mempunyai kadar selulosa yang cukup tinggi yaitu sekitar 54,4%, sedangkan pelepah mempunyai kadar selulosa sekitar 62,3% (5), dan kadar lignin yang cukup tinggi. Pada proses sakarifikasi untuk mendapatkan gula, kadar lignin yang tinggi akan mengganggu proses hidrolisa enzimatis. Lignin mempunyai pengaruh tidak baik terhadap jalananya proses hidrolisa enzimatis, karena lignin mengikat enzim yang terlibat dalam reaksi degradasi. Lignin menetapkan struktur dan kekuatan struktur selulosa karena enzim terikat oleh karbohidrat menjadi lignin-karbohidrat (6). Pada proses enzimatis perlu perlakuan awal (pretreatment) untuk menghilangkan ligninya. Proses delignifikasi biasanya menggunakan asam atau basa yang sangat tidak ramah lingkungan.

Air pada kondisi subkritik adalah air pada kondisi suhu di atas titik didih dan dibawah temperatur kritisnya, dan tekanan dibawah tekanan kritisnya (7). Dalam kondisi subkritik air mempunyai sifat yang berbeda dengan kondisi normal. Dalam kondisi subkritik air mengalami penurunan terhadap densitas dan dielectric constants, demikian juga pKw mengalami perubahan. Menurutnya dielectric constant menaikkan solubilitas molekul-molekul organik. Polaritas air dapat menaikkan kemampuan air untuk melekatkan bahan padat, cair dan gas. Dalam kondisi subkritik, air mempunyai sifat sebagai katalis asam atau basa (6).

Pada proses hidrotermal, lignin tidak perlu dipisahkan, karena lignin akan terurai menjadi bentuk poliol seperti katekol, fenol, dan o-kresol (8). Setelah itu, proses hidrotermal tidak terpengaruhi oleh konsentrasi kadar air dari bahan baku, karena hidrotermal menggunakan media air. Bahan baku dengan kadar air berapapun bisa diproses, tidak perlu proses penguapan yang banyak memerlukan energi dan tenaga. Bahan baku dengan berbagai macam komposisi pembentuknya juga bisa langsung diproses tanpa perlu proses perlakuan awal (pretreatment), semua komponen akan terkonversi dalam proses hidrotermal menjadi molekul yang lebih kecil.

Proses hidrotermal akan memecah molekul besar seperti selulosa, lignin dan hemiselulosa menjadi molekul kecil yang mempunyai rantai C dengan rentang antara C4 - C14, yang bisa dipakai sebagai bahan bakar atau "biocrude" (9). Disamping itu reaksi yang penting adalah desigensasi, yaitu pengurangan oksigen pada lignoselelusa dari 40% menjadi sekitar 10 - 15% untuk menaikkan nilai kalor (10). Proses hidrothermal berlangsung sangat cepat dibandingkan dengan proses enzimatis, sehingga akan mempercepat proses dan dihasilkan fraksi cair yang lebih banyak. Proses piroliisis berlangsung pada suhu yang lebih tinggi dari 500 °C dan dihasilkan char, oil, dan gas, yang merupakan prosi yang besar (10). Pada proses piroliisis kontrol terhadap kondisi prosesnya lebih sukar dibandingkan proses hidrotermal.

Nilai kalor komponen lignoselelusa memiliki nilai kalor yang rendah, seperti selulosa sebesar 16,5 MJ/kg, hemiselulosa sekitar 16,7 MJ/kg, dan lignin mempunyai nilai kalor 20,4 MJ/kg (10). Proses hidrotermal dapat menghasilkan bahan dengan rentang molekul C4 - C14 yang dapat menaikkan nilai kalor yang cukup tinggi sekitar 30 MJ/kg melalui reaksi degradasi yang diikuti reaksi deoksigenasi. Biomassa selulosa biasanya mengandung oksigen sekitar 40 - 60%. Agar bahan bakar cair yang dihasilkan mempunyai nilai kalor yang lebih tinggi, maka kadar oksigen harus dikurangi dalam hasil degradasi dengan proses deoksigenasi. Seperti bahan bakar konvensional, minyak bumi atau gas mempunyai kadar oksigen yang kurang dari 1% (10). Oleh karena itu proses deoksigenasi harus bersamaan dengan proses hidrolisa.

Dalam penelitian ini akan dieksporasi variabel operasi untuk mengetahui kinerja proses hidrotermal dalam kemampuannya untuk menguraikan TKKS menjadi biochar, bahan terlarut dan gas.
BAHAN DAN METODA

Bahan

Bahan yang digunakan adalah limbah tandan kosong kelapa sawit (TKKS) yang berasal dari pabrik minyak kelapa sawit PTPN VIII Malingping, Banten. Natrium carbonat (p.a) sebagai katalis dan air sulung.

Peralatan

Peralatan yang digunakan seperti terlihat pada Gambar 1. Reaktor berupa tabung dengan diameter dalam 2 cm dan panjang 1,7 cm, dengan volume reaktor 55 ml dan bisa dimasukkan kedalam oven secara keseluruhan, sehingga akan terjadi pemanasan secara merata, tidak dilengkapi dengan sistem pengaduk.

Metodologi Penelitian.

Limbah TKKS dikeringkan kemudian dihaluskan dan diayak dengan ukuran partikel 1-3 mm, sejumlah berat tertentu dimasukkan kedalam reaktor, ditambah katalis sebanyak 50 mL. Reaktor di seal, ditutup rapat dan disekrup untuk menahan tekanan dari dalam. Gas nitrogen dengan tekanan tertentu dimasukkan ke dalam reaktor untuk memberikan tekanan awal yang sesuai dengan yang diinginkan. Reaktor dimasukkan kedalam oven yang telah diatur temperaturnya. Proses diambil berlangsung dalam waktu tertentu, sebagai waktu reaksi. Setelah reaksi selesai kemudian reaktor diambil dan didinginkan secara cepat dengan mengguyur dengan air untuk menghentikan proses reaksi. Reaktor dibuka dan larutan yang terjadi disaring untuk mengetahui berapa presentase limbah TKKS yang terdegradasi. Konversi adalah presentase padatan TKKS yang berubah menjadi gas dan bahan terlarut dalam air. Penelitian dilakukan dalam sekali running. Sedangkan kondisi operasi yang dicoba adalah pengaruhr prosentase umpan (perbandingan padatan dan air), prosentase katalis Na₂CO₃, pengaruhr temperatur operasi, waktu reaksi dan tekanan awal gas inert N₂.

HASIL DAN PEMBAHASAN

Proses hidrotermal merupakan proses tiruan seperti proses yang berlangsung pada kerek bumii, yaitu peruraian zat organik yang berasal dari tanaman yang terkubur dalam perut bumi selama bertahun-tahun. Tanaman tersebut mengalami proses peruraian karena terendam air dengan tekanan dan temperatur yang tinggi, sehingga tanaman tersebut mengalami peruraian menjadi batubara dengan proses yang sangat lambat, sampai jutaan tahun. Dalam keadaan terendam air dan temperatur dan tekanan naik secara gradual proses peruraian berlangsung secara termokimia. Dalam proses ini kandungan oksigen dan hidrogen dalam bahan akan berkurang, sedangkan H₂O dan CO₂ keluar dari struktur molekul. Selanjutnya proses ini dipakai dalam proses hidrotermal, untuk mempercepat peruraian zat organik tersebut perlu memberi temperatur dan tekanan yang tinggi, yaitu mendekati kondisi kritisnya, maka reaksi akan berlangsung lebih cepat.

Proses hidrotermal mampu mengurai TKKS menjadi tiga fraksi yaitu, produk padat, zat terlarut air dan gas. Reaksi yang berlangsung pada proses peruraian TKKS meliputi hidrolisis, liquefaction, dehidrasi, deoksigenasi, polimerisasi dan hidrogenasi. Reaksi ini berlangsung secara bersamaan yang belum bisa dijelaskan secara rinci. Proses karbonisasi didominasi proses dehidrasi, glukosa dihidangkarkan airnya menjadi biochar dengan kandungan karbon yang tinggi.

Gambar 2. Konversi TKKS menurut konsentrasi umpan

Perbandingan antara padatan biomasa dan air.
sangat berpengaruh terhadap konversi padatan menjadi zat terlarut dan gas. Terlalu tinggi kandungan padatan dalam umpan akan menyebabkan proses kontak antara air dan padatan terhambat. Untuk mengoptimalkan produksi biochar maka kandungan padatan yang diproses bisa tinggi.

Makin tinggi umpan yang bisa diproses maka proses karbonisasi akan makin efisien, karena dalam satu siklus operasi akan diproses bahan baku dengan konsentrasi yang tinggi, namun kemampuan proses hidrotermal juga terbatas, seperti terlihat pada Gambar 2. Konsentrasi umpan 1,8% memberi konversi yang paling tinggi yaitu sekitar 63%. Artinya padatan TKKS akan terkonversi menjadi zat terlarut dalam air dan gas dan sisanya biochar dengan presentasi karbon yang meningkat.

![Gambar 3. Konversi TKKS pada perubahan konsentrasi katalis](image)

Katalis sangat berpengaruh terhadap kemampuan air untuk melarutkan TKKS menjadi zat terlarut. Namun makin tinggi konsentrasi katalis Na₂CO₃, konversi juga menurun. Konsentrasi katalis 0,5% memberi konversi yang paling tinggi yaitu sekitar 75%, TKKS menjadi zat terlarut dan gas makin besar, seperti terlihat pada Gambar 3.

![Gambar 3. Konversi TKKS pada perubahan temperatur proses](image)

Temperatur proses juga sangat berpengaruh terhadap kemampuan air untuk melarutkan TKKS. Pada temperatur 400 °C mempunyai konversi yang paling tinggi, yaitu sekitar 71%, seperti terlihat pada Gambar 4.

![Gambar 5. Konversi TKKS terhadap perubahan waktu proses](image)

Waktu reaksi juga sangat berpengaruh terhadap konversi TKKS. Waktu reaksi memberi kesempatan berlangsungnya reaksi. Waktu reaksi 3 jam memberi konversi yang paling tinggi, sekitar 71%, seperti terlihat pada Gambar 5. Penambahan waktu reaksi menurunkan konversi TKKS.

Waktu reaksi tidak sama dalam setiap pemakaian bahan baku yang berbeda, karena mempunyai susunan yang berbeda juga. Setiap bahan baku lignoselulosa mempunyai waktu reaksi optimum tidak sama. Waktu reaksi sangat bervariasi, dari 1 sampai 72 jam. Proses dengan waktu tinggal pendek kurang dari 1 jam juga dilakukan dan menghasilkan produk dengan nilai panas yang makin naik.

![Gambar 6. Konversi TKKS terhadap tekanan awal gas reaktor](image)

Tekanan gas akan berpengaruh terhadap sifat air, dielectric constant semakin menurun akan menyebabkan meningkatnya daya larut terhadap zat organik yang akan membantu melarutkan zat-zat organik. Polaritas air menaikkan kemampuan air untuk
melarutkan bahan padat, cair dan gas, dan juga air dalam kondisi subkritis mempunyai sifat sebagai katalis asam atau basa. Tekanan awal gas N\textsubscript{2} tidak banyak pengaruhnya terhadap konversi TKKS, seperti terlihat pada Gambar 6. Kemungkinan karena temperaturnya sudah diatas suhu kritisnya maka tekanan sudah tidak banyak pengaruhnya.

Dibandingkan dengan proses biologis seperti proses anaerobik, proses hidrotermal mempunyai keuntungan, seperti waktu reaksi lebih singkat dalam orde jam. Proses hidrotermal menggunakan temperatur tinggi yang akan menghilangkan pathogen dan kontaminan lainnya yang membunuh produk lebih bersih dan steril. Dibandingkan dengan proses pirolisa, proses pirolisa menggunakan umpan dengan kadar air yang rendah, sedangkan proses hidrotermal menggunakan umpan dengan kadar air berapa saja bisa diproses, tidak perlu ada proses pengerining yang banyak mengonsumsi energi. Adanya air yang ada pada kondisi superkritis pada kenaikan temperatur akan menaikkan daya hidrolisa terhadap zat organik. Pada reaksi hidrolisa air akan membantu memotong ikatan kimia dari molekul besar seperti selulosa.

Temperatur reaksi merupakan parameter yang sangat berpengaruh pada karakterisasi produk yang dihasilkan. Naiknya temperatur akan menaikkan laju reaksi, dan juga waktu reaksi berpengaruh terhadap kualitas produks produk yang dihasilkan.

Untuk perbandingan antara padatan dan air atau konsentrasi umpan, bila konsentrasi umpan tinggi maka akan terjadi konsentrasi monomer yang meningkat yang akan mempermudah reaksi polimerisasi lebih awal. Padatan hendaknya terendam dalam air namun campuran harus bisa diaduk untuk memeratakan reaksi.

KESIMPULAN

Proses hidrotermal mampu mengurakan TKKS menjadi bahan terlarut dan gas. Banyak senyawa yang terjadi dari terurainya TKKS. Fraksi yang larut dalam air merupakan senyawa organik yang kecil-kecil diharapkan merupakan senyawa yang bisa dipakai sebagai bahan bakar cair. Umpam TKKS, 1,8% memberi konversi yang tinggi sekitar 63%, konsentrasi katalis Na\textsubscript{2}CO\textsubscript{3}, memberi konversi yang tinggi sekitar 75%, temperatur operasi 400°C memberi konversi sebesar 73%, sedangkan waktu reaksi 3 jam memberi konversi sebesar 70%, tekanan awal gas N\textsubscript{2}, tidak begitu berpengaruh terhadap konversi TKKS. Produk biochar merupakan produk karbon yang berwarna hitam kocokan yang pekaainnya untuk reklamasi tanah, dan bila diaktifkan menjadi karbon aktif.

Proses hidrotermal mempunyai banyak keuntungan dibandingkan dengan proses yang lain. Dibandingkan dengan proses biologi, hidrotermal mempunyai waktu tinggal yang lebih singkat. Jika dibandingkan dengan proses pirolisa, suhu operasi proses hidrotermal lebih rendah dari pada proses pirolisa dan proses hidrotermal mampu memproses bahan baku dengan kadar air yang tinggi, jadi tidak perlu proses pengerining yang banyak memerlukan energi.

DAFTAR PUSTAKA

