
STATIC CODE ANALYSIS FOR SOFTWARE QUALITY
IMPROVEMENT: A CASE STUDY IN BCI FRAMEWORK

DEVELOPMENT

Indar Sugiarto
Department of Electrical Engineering – Petra Christian University

Jl. Siwalankerto 121-131, Surabaya – 60236
Email: indi@petra.ac.id

ABSTRACT: This paper shows how the systematic approach in software testing using static code analysis
method can be used for improving the software quality of a BCI framework. The method is best performed
during the development phase of framework programs. In the proposed approach, we evaluate several
software metrics which are based on the principles of object oriented design. Since such method is depending
on the underlying programming language, we describe the method in term of C++ language programming
whereas the Qt platform is also currently being used. One of the most important metric is so called software
complexity. Applying the software complexity calculation using both McCabe and Halstead method for the
BCI framework which consists of two important types of BCI, those are SSVEP and P300, we found that
there are two classes in the framework which have very complex and prone to violation of cohesion principle
in OOP. The other metrics are fit the criteria of the proposed framework aspects, such as: MPC is less than
20; average complexity is around value of 5; and the maximum depth is below 10 blocks. Such variables are
considered very important when further developing the BCI framework in the future.

Keyword: static code analysis, software quality, BCI framework.

INTRODUCTION

A brain computer interface is a system that

includes a means for measuring neural signals from
the brain, a method/algorithm for decoding these
signals and a methodology for mapping this decoding
to a behavior or action. In an applicable EEG-based
BCI system, there are at least seven major
components which are required to be synchronized:
data acquisition, signals database/storage, feature
processing (extraction and classification),
visualization (temporal or spatial), command
generation for actuator(s), command database, and
feedback acquisition. The following diagram shows
an example of high level data abstraction used in a
BCI Framework [1].

Multichannel
EEG DAq

Feature
Extraction

Signals
Visualization Feedback

Acquisition

Feature
Classification

Subtitle

11 /23 / 2008

Command
Database

Spatial
Interpolation

Synchronization

Actuator

STORAGE

Figure 1. High level data abstraction of a BCI

framework.

There are several important parameters necessary
for developing a BCI framework which supports
future application of the framework which comply the
standard quality for software development defined by
ISO 9126 (which is being superseded by ISO
25000:2005), such as: functionality, reliability,
usability, efficiency, maintainability, and portability.
These attributes, which are part of software quality
assurance standards used in the software industry,
should be considered important when developing the
BCI framework. This research is designed to fulfill
those general requirements although not in specific
term since those attributes are abstract and only have
metrics for completed framework [3]. There is,
however, a systematic approach to assess quality of
the software in this research which is classified as
software quality control. This systematic approach,
which is called software testing, is an empirical
technical investigation conducted to provide
information about the quality of the software under
test based on several software metrics. Whereas
software quality control is a control of products,
software quality assurance is a control of processes. In
this research, software testing is performed in static
code analysis.

Apart of aforementioned attributes, we propose
the following aspects when developing the BCI
framework:
• Real-time, compilation-based and object oriented

programming language. In this case, C++ is
chosen since it is well-known for its speed,
portability and abstraction.

166

Sugiarto, static code analysis for software quality improvement

167

• Logical separation of modules. The inter-operable
components of the system should work (almost)
independently in its own thread or process
(including remote system).

• Open architecture: software components should be
open for extensions but closed for changes.
Extensions should be possible without any
changes of the current source code.

• Support platform independent paradigm. Although
we cannot create fully platform independent
system due to driver support problem at the
moment, the program should directed to support
platform independent in the future development of
BCI framework.

• Well defined documentation which supports
abstraction level of modular structure and test-
driven design.

• Easy to use and well-defined interface.

There are several key points which are very

important to implement a real-time framework using
standard PC based on the above approaches.
Although every Operating System may different in
realizing or supporting these concepts, this difference
may not look so big if the underlying programming
language is the same. In this paper, we use C++ as the
programming language to build the framework which
is based on general assumption that the well-known
C++ is fast enough and close enough to the machine
language paradigm. The Qt framework, which
provides fast and robust GUI visualization of
programs, is used in this research. Thus, the static
code analysis in this paper will be described based on
C++ programming paradigm.

This paper is organized as follows. After giving a
brief explanation about the motivation background,
the paper continues with the description of the method
and followed by the implementation result. The
discussion about the result will be closed with
conclusions.

METHOD

There are several methods that can be used to test

the BCI framework software in order to maintain such
level of software quality. At some points, software
testing can be considered as part of Software Quality
Control. After finishing the design process (also
completing verification procedure), the program
should undergo validation process through several
testing procedures, statically or dynamically. Static
testing is a form of software testing where the
software’s code is inspected without actually running
the software. Dynamic testing, on the other hand, will
execute the software and inspect the behavior of the
software during run-time. In this paper, static code
analysis is performed by measuring several metrics in

order to collect information about software
complexity and vulnerability.

There are several important software metrics
which are measured in this paper. Software metric is a
quantitative parameter that is commonly used in
software quality assessment. It is common in software
engineering that one method may differ from another
due to different programming language scheme and
structure [4], [5]. For example, the metrics in C++
source files can be ambiguous when conditional
compilation is used to define different versions of a
substructure. Therefore, some software tools ignores
all conditional #else clauses and counts metrics only
in the code that lies between the #if... and #else
preprocessor directives. Not all of metrics for C++
will be used in this paper; only the following metrics
are used (Table 1).

Especially for measuring software complexity, a
significant complexity measure increase during
testing may be the sign of a brittle or high-risk
module. In this paper both approaches, McCabe and
Halstead, are used. Halstead measures have been
criticized for a variety of reasons, among them the
claim that they are a weak measure because they
measure lexical and/or textual complexity rather than
the structural or logic flow complexity exemplified by
Cyclomatic Complexity measures. However, they
have been shown to be a very strong component of
the Maintainability Index measurement of
maintainability [7]. In particular, the complexity of
code with a high ratio of calculational logic to branch
logic may be more accurately assessed by Halstead
measures than by Cyclomatic Complexity, which
measures structural complexity.

There are three software tools which are used in
this paper: SourceMonitor, LocMetrics, and Crystal
REVS. SourceMonitor and LocMetrics are freeware
and available for free download, while Crystal REVS
is proprietary software but it offers an evaluation
copy. All of that software can be downloaded from
the following website:
• http://www.campwoodsw.com/sourcemonitor.html
• http://www.locmetrics.com
• http://www.sgvsarc.com/

To maintain the quality of the program during

development, the following rules which are based on
our proposed approach mentioned in the introduction
are used:
• Method per class must be less than 20 to avoid

superclass structure. Preferably, the maximum
MPC (methods per class) is kept below scale of 10
in order to maintain low coupling in the module.

• Average complexity is kept as low as possible,
preferable below scale of 5.

• The maximum depth is kept below 10 blocks to
reduce function overhead.

JURNAL INFORMATIKA VOL. 9, NO. 2, NOVEMBER 2008: 166 - 172

168

EXPERIMENT RESULT

In our BCI framework, we develop the
CssvepLed class which is responsible for handling
only the SSVEP part of the BCI framework and has
been started since January 2008 [1], [8]. It was then
integrated into CBCIFrameWork, which is the final
framework of the BCI system [2], in the beginning of
April 2008. A new Cp300 class, which is responsible
for handling the P300 part of the BCI framework, was
integrated into the CBCIFrameWork also in April
2008 together with the letter matrix for the spelling
application.

One of the applications of our BCI framework is
the Spelling Program. The first version the program,

which is called The Speller, was created on
November 2007 and it uses the aforementioned
CssvepLed class [9]. After the development of the
CBCIFrameWork, The Speller was renamed as
Speller_v2.xx (where xx is the minority updates to the
framework). Speller_v2.xx is an integrated program
which accommodates both SSVEP and P300 type of
BCI. Until now, this integrated system has reached its
version 2.7. It means that there are seven updates /
changes introduced to the framework since its
starting. The following table gives summary from all
seven sub-version of the integrated system developed
in this research. The values in this table are generated
by SourceMonitor version 2.4.

Table 1. C++ metrics to be used for static code analysis.

Metrics Description
Lines of Code (LOC) This metric counts the lines of non-blank and non-comment source code. LOC was

the earliest metrics to be used in computer science and still be used for many decades
even until now, although some researchers thought that its meaning is absurd.
In C++, computational statements are terminated with a semicolon character.
Branches such as if, for, while and goto are also counted as statements. The exception
control statements try and catch are also counted as statements. Preprocessor
directives #include, #define, and #undef are counted as statements. All other
preprocessor directives are ignored. In addition all statements between each #else or
#elif statement and its closing #endif statement are ignored, to eliminate fractured
block structures.

Percent Lines with
Comments

The lines that contain comments, either C style (/*...*/) or C++ style (//...) are counted
and compared to the total number of lines in the file to compute this metric.

Methods per Class Both inline and non-inline class and template class implementations are counted.
This metric is an overall average for all class and template method implementations
in a file or checkpoint, computed as the total number of methods divided by the total
number of classes and templates for which method implementations are found.

Average Statements per
Method

The total number of statements found inside of methods found in a file or checkpoint
divided by the number of methods found in the file or checkpoint.

Software Complexity The complexity value of the most complex method or function in a file. The most
common method to measure complexity is by using cyclomatic complexity of the
directed acyclic graph which represents the flow of control within each function. First
proposed by McCabe [6] as a measure of the minimum number of test cases to
ensure all parts of each function are exercised. It is now widely accepted as a measure
for the detection of code which is likely to be error-prone and/or difficult to maintain.

Another complexity value that can be used for software assessment is Halstead's
Complexity.

Average Complexity The Average Complexity metric is a measure of the overall complexity measured for
each method (and, if present, each function) in a file or checkpoint. It is computed as
a simple arithmetic average of all complexity values measured for a file or project.

Block Depth Block Depth is a measure of how many nested blocks are exists within one upper
level block. Maximum Block Depth is calculated from the top level of the source
code, but namespaces are not included in this block depth metrics. Average Block
Depth is the average nested block depth weighted by depth.

Sugiarto, static code analysis for software quality improvement

169

Table 2. Summary of software metrics generated for seven sub-version of the program

 NOM LOC %COM MPC Average
LOC/Method

Average
Complexity

Max
Depth

Average
Depth

Speller_v2.0 9 1790 9.80 6.75 15.70 5.42 7 1.93
Speller_v2.1 10 2155 11.90 6.44 18.20 6.05 7 2.20
Speller_v2.2 10 2329 9.00 7.00 20.00 6.48 8 2.38
Speller_v2.3 16 3492 7.40 7.07 17.30 5.22 8 2.12
Speller_v2.4 18 4322 9.30 7.06 18.60 5.17 8 2.05
Speller_v2.5 18 4418 9.20 7.06 19.00 5.19 8 2.04
Speller_v2.6 18 5360 8.70 8.29 19.90 5.27 8 1.98
Note: NOM = Number of Modules, LOC = Lines of Code, %COM = Percent Lines with Comment, MPC =

Methods per Class

(a) (b)

(c)

Figure 2. Kiviat Diagram of three version of the integrated system: a) Speller_v2.0, b) Speller_v2.2, c)
Speller_v2.7

JURNAL INFORMATIKA VOL. 9, NO. 2, NOVEMBER 2008: 166 - 172

170

The following picture shows Kiviat Diagram for
Speller_v2.0, Speller_v2.2, and Speller_v2.7. These
Kiviat Diagrams are generated according to data
presented in Table 2 using SourceMonitor program.

From Table 2 and Figure 2, it can be concluded
that:
• The process development of the program is in a

good direction, since the average complexity of
overall program tends to lower. However, it is
very difficult to maintain the average complexity
below scale 5 due to individual complexity in each
class. Also, Methods per Class and Average Depth
are kept in range, although they tend to increase.

• The Number of Methods per Class is low, thus it
will increase the number of LOC per method. This
is undesirable because it violates Single-
Responsibility principle of Object Oriented Design
and should be optimized in the future.

• The percent of Lines with Comments is very low.
Unfortunately, some modules in the program are

generated automatically by the Qt’s compiler and
we cannot add specific comments to those
modules. Low percentage in this value means that
the program, in general, lacks of self-explanation.
It means that, it becomes difficult to understand or
modify the program by other person. However,
increasing the number of comments in another
module beside of those auto-generated modules by
Qt will yields in a source code full of comments
and somehow makes it less clear to understand the
main program structure.

To make final conclusion from static code

analysis for the final version of the program in this
paper, the Cyclomatic Complexity from McCabe and
Difficulty Metric from Halstead are also calculated.
The following tables are result analysis from program
LocMetrics and Crystal REVS which are applied to
Speller_v2.7.

Table 3. McCabe's Complexity measurement result for Speller_v2.7.

McCabe's Complexity

Modules Cyclomatic
Complexity

v(G)

Design
Complexity

iv(G)

Essential
Complexity

vd(G)

Cyclomatic
Density id(G)

Design
Density
id(G)

Essential
Density
ed(G)

BCIGlobal 0 0 0 0 0 0
CConfig 31 4 25 0.15 0.13 0.81
CGraphicsFrameWork 41 3 15 0.14 0.07 0.37
CImpedance 3 1 3 0.05 0.33 1
CMainDialog 49 14 19 0.15 0.29 0.39
Cp300 113 18 34 0.19 0.16 0.3
Cp300Thread 20 8 13 0.17 0.4 0.65
CParserHelper 24 2 26 0.36 0.08 1.08
CProtocol 1 1 2 0.05 1 2
CssvepLed 120 29 39 0.16 0.24 0.32
CssvepThread 4 1 5 0.11 0.25 1.25
CssvepTimer 11 6 5 0.22 0.55 0.45
CSystemLogging 25 7 11 0.14 0.28 0.44
CTcpIp 9 4 8 0.11 0.44 0.89
main.cpp 1 1 1 0.08 1 1
ui_Config 1 1 1 0.05 0.07 0.95
ui_Impedance 1 1 1 0.03 0.05 0.5
ui_Protocol 1 1 1 0.06 0.07 0.95

Sugiarto, static code analysis for software quality improvement

171

Table 4. Halstead's Complexity measurement result for Speller_v2.7.

Halstead's Complexity Modules Length (N) Vocabulary (n) Volume (v) Difficulty (d) Effort (e)
BCIGlobal 6 6 10.75 0 0
CConfig 834 137 4103.26 4 17518.81
CGraphicsFrameWork 927 194 4888.3 13 66094.6
CImpedance 170 41 631.31 1 932.28
CMainDialog 966 211 5169.89 11 58226.59
Cp300 2546 389 15183.27 14 225398.7
Cp300Thread 231 59 941.91 11 11124.89
CParserHelper 172 46 658.53 2 1915.71
CProtocol 4 4 5.5 0 0
CssvepLed 3256 440 19818.54 14 279808.4
CssvepThread 9 4 12.48 1 12.48
CssvepTimer 49 23 153.64 7 1109.08
CSystemLogging 397 97 1816.16 10 19029.7
CTcpIp 101 49 393.07 12 5089.27
main.cpp 26 18 75.15 3 250.5
ui_Config 2258 369 13346.58 11 158342.1
ui_Impedance 659 121 3160 6 19290.75
ui_Protocol 2082 348 12184.29 9 109852

Combining both Table 3 and Table 4 will result in the following diagram.

Figure 3. Complexity Measurement Result for both McCabe and Halstead Metrics.

JURNAL INFORMATIKA VOL. 9, NO. 2, NOVEMBER 2008: 166 - 172

172

DISCUSSION

It can be seen from Figure 3 that CssvepLed and

Cp300 are two most complex members of
CBCIFrameWork. The module with high complexity
value tends to be difficult to maintain and also has
high defect density. This information is very
important during development phase, especially if the
framework will be further developed in a team work.
Using such kind of graph, every member of the team
will know which module or part of the program
requires more attention and effort. We will also know
that we are not supposed to create an interface
between complex modules directly (e.g. between
Cp300 and CssvepLed) because it will create a new
overhead and also violates cohesion principle in OOP
(Object Oriented Programming). One way to reduce
complexity of CssvepLed and Cp300 is by re-
structuring those classes into smaller classes and then
use inheritance and encapsulation principle of OOP to
increase their cohesion. This approach should be
explored further if CBCIFrameWork will be
employed for future development.

It also can be seen that modules such as
ui_Config, ui_Impedance, and ui_Protocol, which are
produced using Qt’s platform, have intrinsic
characteristic in that they have low cyclomatic
complexity but high difficulty metric. That is why
Kiviat Diagram in Figure 2 shows very low value for
the percentage of Lines with Comments. For person
who doesn’t have any experience with Qt, reading
those modules will be very difficult.

CONCLUSION

A method for assuring the quality of the software

through systematic approach using static code
analysis has been presented. The method has been
applied during the development phase of a BCI
framework. In the proposed method, we evaluate
several software metrics which are based on the
principles of object oriented design. Since such
method is depending on the underlying programming
language, we describe the method in term of C++
language programming whereas the Qt platform is
also currently being used. One of the most important
metric is so called software complexity. Applying the
software complexity calculation using both McCabe
and Halstead method for the BCI framework which
consists of two important types of BCI, that is SSVEP
and P300, we found that there are two classes in the
framework which have very complex and prone to
violation of cohesion principle in OOP. The other
metrics are fit the criteria of the proposed framework
aspects, such as: MPC is less than 20; average
complexity is around value of 5; and the maximum
depth is below 10 blocks. Such variables are
considered very important when further developing
the BCI framework in the future.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Brendan

Allison and Prof. Axel Gräser from Institute for
Automation at University of Bremen for their advice,
and all volunteers for taking part in the experiment.

REFERENCES

1. Sugiarto, I. and Putro, I. H. 2009. Application of

Distributed System in Neuroscience, A Case
Study of BCI Framework. The 1st International
Seminar on Science and Technology 2009
(ISSTEC2009). Yogyakarta: Universitas Islam
Indonesia.

2. Sugiarto, I. 2009. Display and Feedback
Approach for BCI System. Master Thesis.
University of Bremen.

3. Jalote, P. 2005. An Integrated Approach to
Software Engineering. Springer.

4. Borsoi, B. T. and Jorge L.B. 2008. A Method to
Define an Object Oriented Software Process
Architecture. 19th Australian Conference on
Software Engineering. IEEE.

5. Taylor, R.N., Medvidovic, N., Anderson, K.N.
and Whitehead Jr., E.J. 1996. A Component and
Message-Based Architectural Style for GUI
Software. IEEE Transactions on Software
Engineering. Vol. 22(6): 390-406.

6. McCabe, T. 1976. A Complexity Measure. IEEE
Transactions On Software Engineering. Vol.
2(4): 308-320.

7. VanDoren, E. 1997. Halstead Complexity
Measure. Last accessed May 8, 2008 from
http://www.sei.cmu.edu/str/descriptions/halstead.
html.

8. Valbuena, D., Sugiarto, I and Gräser, A. 2008.
Spelling with the Bremen Brain-Computer
Interface and the Integrated SSVEP Stimulator.
in proc 4th International Brain-Computer
Interface Workshop and Training Course 2008.
Austria: Verlag der Technischen Universität
Graz. pp. 291-296.

9. Sugiarto, I., Allison, B. Z. and Gräser, A. 2009.
Optimization Strategy for SSVEP-Based BCI in
Spelling Program Application. International
Conference on Computer Engineering and
Technology 2009 (ICCET 2009). Singapore:
International Association of Computer Science
and Information Technology.

