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ABSTRACT:  In this paper the Ising model is modified by considering its parameters as a vector that 
depends on the neighborhoods of the image’s pixels. We applied this modification for generating binary 
images, provided the original image is given. An example is exposed as a result of simulation using Gibbs 
sampler.  
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INTRODUCTION 
 

Generating image is a part of the texture 
modeling. Basically, texture modeling can be 
classified to be two models, i.e., the deterministic 
models or the probabilistic ones. The deterministic 
models, usually rely on a heuristics procedure, e.g., 
Efros et.al. [4,5], Li Yi Wei [11]. On the other hand, 
the probabilistic models are mainly based on the 
random fields, e.g., Besag, [2,3], Geman and Geman 
[6,7], Paget [10], Winkler [12].   

In this paper we used the Gibbs random field, in 
particular with the Ising model as its energy function, 
for generating an image. We modified the Ising model 
by considering its parameters as a vector that depends 
on the neighborhoods of image’s pixels. 
 
MARKOV RANDOM FIELDS 
 

To model a digital image as a realization of a 
Markov Random Field (MRF), we consider a finite 
index set S to be given and the elements s ∈ S denote 
the pixels or sites of an image x. Assume that a finite 
set of discrete labels or gray scale value Ls ⊆ L  is 
given for every site s ∈ S. 

We denote the set of all images X = {Xs; Xs ∈ Ls, 
s ∈ S } by χ 
 
Definition 2.1: Neighborhood System 

Let N denote a collection of subsets of S of the form 
N = {N (s) ⊂ S | s ∈ S} 

N is called a neighborhood system for S if it satisfies 
(i)  s ∉  N (s) ∀ s ∈ S 
(ii) ∀ s,t ∈ S with s ≠ t  
      We have s∈N (t) ⇔ t∈N (s)   
The sites t∈N (s) is called neighbors of s. We write 
<s,t> if s and t are neighbors of each other.  

In the case of a regular pixel grid the set of sites S 
can be considered to be a subset of  Z2, e.g., S = {(i,j) 
∈ Z2 | -n  ≤ i,j ≤ n}for a square lattice of size (2n+1) x 
(2n+1). We define the neighbors of a pixel (i,j) on 
such a grid to be the set of nearby sites whose 
midpoints lie within a circle for radius c, i.e., 

N (i,j) := {(k,l) ∈ S | 0 < (k-i)2 + (l-j)2 ≤ c2} 

To describe the kind of neighborhood, we define 
the order of a neighborhood with increasing c. The 
first order neighborhood system for which c2 = 1, the 
second order neighborhood system corresponds to c2 
= 2 considers the eight nearest pixels to be neighbors 
and so on.  We will denote these neighborhood 
systems by No, where o ∈{1,2,...}corresponds to the 
order. 

 
 

Figure 1. Illustration of the neighborhood systems 
of order 1 to 4: The pixels having their midpoints 
within the smaller circle are first order (c = 1), 
pixels within the larger circle are second order 
neighbors (c = 2 ). 
 

This system can be decomposed into subsets 
called a clique, which is going to be used in the next 
section, in this way. 
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Definition 2.2: Clique 

A subset C ⊂ S is called a clique with respect to 
the neighborhood system N if either C contains only 
one element or if any two different elements in C are 
neighbors.  We denote the set of all cliques by C .   

For any neighborhood system N we can decom-
pose the set of all possible cliques into subsets Ci, i = 
1,2,...,which contain all cliques of cardinality i, 
respectively. 

Then we have C = Υi iC with C1:= {{s}| s ∈ S} 
being the set of all singletons, C2 :={{s1,s2} | s1,s2 ∈S 
are neighbors}, the set of all pair-set cliques, and so 
on. 
 

 
Figure 2. The different clique types with their asso-
ciated clique parameters 
 

Now, we can define a Markov random field 
(MRF) with respect to the neighborhood system N. A 
MRF with ∏ density the distribution of the whole 
image X and ∏s  the marginal distribution of the gray 
scale value Xs at pixel s ∈ S can be formulated as 

∏s (xs|xr, r ≠ s) = ∏ (xs|xr, r ∈N(s), 
                                    s ∈ S, x ∈ χ        (1) 
 

An image is modeled by estimating this function 
with respect to a neighborhood system N. 
 
GIBBS RANDOM FIELDS 

To calculate the conditional probability in (1) we 
use the representation of random fields in the Gibbsian 
form, that is, we assume, 
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which are always strictly positive and hence random 
fields. 

Such a measure ∏ is called the Gibbs Random 
Field (GRF) induced by the energy function, H, and 
the denominator Z is called the partition function. It is 
convenient to decompose the energy into the contri-
butions of configurations on subsets of S. 

Definition 3.1: Potential Function  

A potential is a family {UA: A ⊂ S}of functions 
on χ such that: 
(i)  UO (x) = 0 
(ii) UA(x) = UA(y) if xs = ys for each s ∈A  

 
The energy of the potential U is given by 
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We call U a neighbor potential with respect to a 
neighborhood system N if UA ≡ 0 whenever A is not a 
clique.  The functions UA are then called as clique 
potentials.  In the following we denote a clique 
potential by UC where C ∈ C. 

Let ∏ be a Gibbs field where the energy function 
is the energy of some neighbor potential U with 
respect to a neighborhood system N that is 
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Then the local characteristics for any subset A ⊂ S 
are given by 
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where yA xs/A denotes the image with gray values yS, s 
∈ A and xs, s∈ S/A. The proof of this proposition can 
be seen in Winkler [12]. 
 
MODIFIED ISING MODEL 

Many models for texture synthesis have been 
constructed via Markov Random Fields. Some of the 
famous models are the Ising Model, Binomial models 
and the Phi model can found in e.g. Winkler [12]. 

The models above work well for synthesizing 
random textures. The Phi model has been applied for 
tomographic image reconstruction by Geman [6], and 
also in segmentation of natural textured images, 
Geman and Graffigne [8]. 

The Autobinomial model was introduced by 
Besag [2].  Acuna [1] modified this model by adding a 
penalty term such that the Gibbs sampler can be 
driven towards the desired proportion of intensities 
and keeps control of the gray scale histogram. 

The Ising model seems to be simple at a first 
glance. But it exhibits a variety of fundamental and 
typical phenomena shared by many large complex 
systems. The energy function of the Ising model is 
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where the clique potential for every pair clique C of 
any shape is defined by 
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The simple second order neighborhood system N2 
for two levels gray values and the control parameter 
θ1= θ2 = 1, θ3= θ4 = -1, without considering the 
boundary, will generate a checkerboard texture, with 
size of every white and black. This can be explained 
as if we choose θ1= θ2 = 1, then pixels with opposite 
gray values are favorable for the horizontal and 
vertical neighbors, and θ3= θ4 = -1, such that diagonal 
neighbors tend to have similar gray values. 

 
Figure 3. An illustration of cliques pair for N2 with 
the considering control parameters θ's to generate 
a checkerboard texture. 
 

We modified the Ising model by changing the 
control parameters θ such that these parameters do not 
only depend on the pair of the clique types but also on 
the relative position of the site s in the clique. If, e.g., 
we consider N2 and the control parameter θ  =  (θ1,θ2 , 
θ3, θ4) as a vector, then the position of the θ 's is 
shown in the Figures 4. 

The generalized Ising potential function, can be 
written as 
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where the clique potential and the control parameter 
for every pair clique c of any shape is defined as in (6). 
T*(No) is the number clique. The control parameters θi 
(s,t) may not only depend on the type of clique but, in 
general, also on the gray values xs,xt.   

We know that the similarity or dissimilarity for a 
pixel to its neighborhood is measured by U(xs,xt) and 
low energy configurations are more likely than the 
higher one. Based on these two conditions, for 
synthesizing a binary images,  θi (s,t) can be chosen as 
the negative value of the potential function U(xs,xt), i.e. 
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where |χ| is number of elements of the set χ. 
 

 
Figure 4. Modified cliques pair for N2 with the 
considering control parameters θs  
      

It gives the same probability for each image and 
that implies same probability for each gray scale value 
at each pixel!. 

In Figure 5 we give an example for generating a 
binary image, i.e. a reference image. This image is 
initiated from the binary random image. We use 
modified cliques pair (Figure4) and Gibbs sampler 
with generalized Ising potential function (7). First, we 
train the initial image to get the parameters θi(s, t) as 
the negative value of the potential function from the 
reference image. At first iteration, we get the left 
image of Figure5. After several iterations, the image 
gets better and better until it reaches the goal, i.e, the 
reference image, as it is depicted in Figure5 (right). 

This modification is the first step for synthesizing 
the rich gray level texture. The complete approach can 
be seen in Halim [9]. 

 
Algorithm 1: 
1. Calculate the gray level proportion of thenor-

malized sample image. 
2.  Generate random image x with size K = k x nrow, 

M = l x ncol, k,l ∈ Z based on the gray level 
proportion which has calculated in Step 1. 

3. Set TempConstant = L; InversTemp = log(2) / 
TempConstant;  Set StopCriterion = 0.005 x K  x; 
sweep = 1; 

4.  Use Metropolis sampler and Simulated annealing, 
Geman and Geman [8] synthesize the texture.  

      repeat 
      set p = 1; 
      for i = KBound to (K - KBound) do 

for j = NBound to (M - MBound) do 
5.1  Calculate the local gray level proportion in the 

neighborhood of pixel (i,j); 
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5.2  Calculate the energy function Hold based on 
(7) 

5.3  Choose a new label uniformly random. 
5.4 Calculate the energy function for the new 

composition Hnew based on (7). 
5.5   if Hnew > Hold 
  p = exp(-InversTemp x (Hnew-Hold) 
 we replace the old label by the  new one with 

probability  p. 
5.6  Recalculate the gray value proportion. 
5.7  set Sweep = Sweep + 1; InversTemp = log 

(1+Sweep)/TempConstant. 
        until (StopCriterion is fulfilled) or (x satisfies 

stability criterion) 
 

CONCLUTION AND REMARKS 

The Ising model has properties that the potential 
for a clique with two different gray values is 
independent of the absolute difference of the gray 
values. This means that the Ising model could not 
make differences of more than two gray values. 
Therefore a further modification should be made for 
general gray images. 
 

 
 

 
Figure 5. (left–right) Initial image, after some 
iterations and the final result 
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