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ABSTRACT: Three-Phase Dependency Analysis (TPDA) algorithm was proved as most efficient 
algorithm (which requires at most O(N4) Conditional Independence (CI) tests). By integrating 
TPDA with “node topological sort algorithm”, it can be used to learn Bayesian Network (BN) 
structure from missing value (named as TPDA1 algorithm).  And then, outlier can be reduced by 
applying an “outlier detection & removal algorithm” as pre-processing for TPDA1. TPDA2 

algorithm proposed consists of those ideas, outlier detection & removal, TPDA, and node 
topological sort node. 
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INTRODUCTION 

 
Currently, most of algorithms for structural 

learning of BN are developed based on assumption 
that data is complete. Although there have been many 
methods for handling missing value and noise, yet 
there has not been any method to improve capability 
of such algorithms in term of incompleteness and 
outlier.  

In recent years, graphical probabilistic models, 
including Bayesian Networks, have become very 
popular. BNs are considered as classifier after the 
discovery that Naïve-Bayes are effective. Since then, 
learning Bayesian networks has become a very active 
research topic and many algorithms have been 
developed for it. As noted above, scoring-based and 
CI or constraint-based are two general approaches to 
structural learning of BN. Heckerman in [9] compare 
these two approach and conclude that, in terms of 
modeling a distribution, scoring-based methods BN 
are superior than constraint-based methods. None-
theless, Friedman in [7] show theoretically that 
scoring-based methods may result in poor classifiers 
and less efficient in practice. On the other hand, 
constraint-based methods are usually much more 
efficient when the number of variables are large [2,3]. 
[3] summarizes the representative scoring-based and 
constraint-based algorithms. Another approaches 
called model averaging propose that instead of 
searching for a single best solution, the algorithms 
result in several networks and use the ‘average’ of 
these networks to perform inference [3,15]. Some 
example include in [3, 13, 21, 23]. Scoring-based and 
constraint-based algorithms have their own advan-
tages and disadvantages. As a result, there are some 
effort to combine these two method in order to 

maximize the advantages. Some algorithms are 
[21,22] and [23]. Generally, they start learning process 
with constraint-based then scoring based. 

As consideration, this section presents some of 
welknown algorithms for learning BN structure using 
different approaches. The algorithms are K2 (for 
scoring-based method), PC (for constraint-based 
method), CB (for hybrid method), BC and BSEM 
(learning from incomplete data). 
 
K2  Algorithm 
 

The algorithm was developed by [4]. It greedily 
searches for DAG that approximates maximizing 
score. The search space is a set of all DAGs 
containing the n variables. The algorithm proceeds as 
follows [4,19], and the complete algorithm can be 
found in [4]: 

Assume an ordering node. Let Pred (Xi) be the set 
of nodes that proceed Xi in the ordering. Set 
initial parents PAi of Xi to empty and compute 
scoreB. Next, examine the nodes in sequence 
according to the ordering. When examining Xi, 
determine the nodes in Pred (Xi) which most 
increases the score. Add greedily this node to 
PAi. Continue doing this until the addition of no 
node increases the score. 

 
PC Algorithm 

PC algorithm developed [23] to learn BN 
structure based on conditional independencies using 
CI tests [13]. As one of the famous constraint-based 
algorithms, the algorithm searches a DAG pattern by 
which distribution P admits faithfulness condition to 
the DAG representation. Moreover, given the set of 
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conditional independencies in a probability distribu-
tion, it assumes the following conditions: 
• Faithfulness of distribution P 
• Sufficiency of V, i.e., there is no missing value or 

hidden variable 
• CI test 
 

In general, PC algorithm can be divided into three 
phase as follows, and the complete algorithm can be 
found in [21]: 
• Identification of undirected graph: find an initial 

graph in which every pair of nodes having 
dependencies will be connected by an edge. 
Whilst, every pair of nodes having independencies 
will not be connected. 

• Identification of uncoupled head-to-head meeting: 
based on the result of previous phase, it search all 
uncoupled meeting (X–Z–Y) which is potentially 
being uncoupled head-to-head meeting 
(X→Z←Y). Then edge on that uncoupled meeting 
is oriented becomes uncoupled head-to-head 
meeting. 

• Orienting remaining edges: orient remaining edges 
resulting from the previous phase. The orientation 
is such that the resulting graph having no cycle.  

 
CB Algorithm 
 

As stated above, scoring-based and constraint-
based methods have their own advantages and 
disadvantages. Some algorithms were developed by 
combining those two methods to minimize the 
disadvantages while maximizing the advantages. CB 
algorithm developed by [22] is one example of such 
algorithms [21,22]. It does not require prior know-
ledge since it generates node ordering resulting from 
constraint-based algorithm. Then, it continues the 
process by employing scoring-based algorithm. The 
complete algorithm is in [22] assuming the following 
conditions: 
• Variables are discrete 
• Cases occur independently 
• No missing value (data is complete) 
• No information about prior probability regarding 

the structure 
 
Two phases constitute CB algorithm as follows: 
• 1st phase: apply modified PC algorithm to generate 

undirected graph and orient edges. Then 
topological sort is apply to the resulting graph to 
obtain node ordering 

• 2nd phase: given node ordering from 1st phase, 
apply K2 algorithm to learn BN structure 

Bound & Collapse (BC) Algorithm 

Bound and Collapse (BC) method is proposed by 
[18] to overcome problems of Missing Information 
Principles [18,20,21]. BC method is a deterministic 
method estimating conditional probabilities which 
define the dependencies in BN. It is not rely on the 
Missing Information Principles. It starts by bounding 
the set of possible estimates (interval estimate) based 
on the available observations in the database. Then, it 
collapses the resulting interval estimate to a unique 
point estimate by combining extreme values of the 
interval estimate. Based on this unique point estimate, 
dependency in data is calculated for which it becomes 
the basis of learning the structure. Node ordering & 
scoring function are required for the learning process. 
Ramoni et all concludes that BC method is robust and 
independence of execution time regarding the number 
of missing data, assuming the following condition 
about the input data: 
• Attributes in database have discrete values 
• There is prior information about node ordering 
 
Bayesian Structural EM (BSEM) Algorithm 

This algorithm is a modification of EM algorithm. 
Originally EM algorithm is an algorithm to estimate 
missing data. It is then developed by Friedman in 
order to learn structure of BN from data with missing 
value (incomplete data) [15]. So, like EM algorithm, 
BSEM also consists of Expectation step and 
Maximation step. 

The objective of Expectation step is to estimate 
the probability of  missing value by considering other 
data. The algorithm used is Maximum at Posterior 
(MAP). It iteratively updates prior probability of 
variable until convergence. The resulting maximum 
posterior probability represents conditional probability 
of complete data. 

Maximation step is intended to maximize the 
structure score. With DAGOPS algorithm, it begins 
by learning all possible structure, calculate the score, 
and then choose structure with highest score. The 
previous structure score is compared with the new 
one, and the higher score will be chosen. Although the 
algorithm does not need node ordering information, 
however, it might be needed to reduce the search 
space resulting from DAGOPS algorithm. 

All of the above algorithms assume that data set 
are complete and sufficient. However, in real world, 
there are many cases where data is incomplete 
including missing values. There are also algorithms 
that can handling data sets with missing values. Such 
algorithms are Bound and Collapse [18], Structural 
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EM [7], EMCMC[14]. They are all based on scoring-
based methods. 

This paper is intended to describe an 
improvement of Three-Phase Dependency Analysis 
(TPDA) algorithm to become TPDA2 Algorithm, 
which is usefull for learning BN structure from 
missing value  and outliers by integrating scoring-
based approach, in more efficient way. This approach 
can be used as  basic algorithm for classification 
process in Data Mining (DM). 

The TPDA algorithm chosen originally is 
developed using ideas from information theory, which 
requires at most O(N4) Conditional Independence (CI) 
tests to learn an N-variable BN [3]. Compared to the 
others methods based on “constraint-based 
algorithms” (as presented aboves) which are normally 
require exponential number of CI test, TPDA 
algorithm is chosen due to its improvement in 
efficiency. Moreover, the TPDA algorithm is correct 
given a sufficient quantity of training data and 
whenever the underlying model is DAG faithful [3]. 
 
THREE-PHASE DEPENDENCY ANALYSIS 
(TPDA) ALGORITHM 

The TPDA algorithm was developed by Cheng et 
al [3] using the idea of information theory. Some 
assumptions are required about the input data: 
• The data set is “Independent and Identically 

Distributed (IID)” 
• The cases in the data are drawn IID from a DAG-

faithful distribution 
• The attributes of a table have discrete values 
• There are no missing values in any of records 
• The quantity of data is large enough for the CI test 

being reliable 
 

TPDA consists of three phases of TPDA 
algorithm, i.e.: drafting, thickening and thinning, as 
described belows, and complete TPDA algorithm can 
be found in [3]: 
1. Drafting Phase: produces an initial set of edges 

based on sufficient mutual information test. The 
draft is a singly-connected graph (a graph without 
loop) which is found using the Chow-Liu 
algorithm 

2. Thickening Phase: adds edges to the current graph 
when the pairs of nodes cannot be separated using 
a set of relevant CI tests.The graph produced will 
contain all the edges of the underlying dependency 
model 

3. Thinning Phase: each edge is examined and it will 
be removed if the two nodes of the edge are found 
to be conditionally independent. Finally, TPDA 
runs procedure for orienting edges. 

TPDA2  ALGORITHM 
 

The objective of improvement expected (handling 
missing value and outliers), would be achieved by 
applying the following general approach: 
1. modify TPDA algorithm to learn BN structure 

from data with missing value, named as TPDA1 
2. enhance TPDA1 capability to learn BN structure 

from outliers, named as TPDA2 
 
TPDA1 

TPDA1 is modified using the idea of CB 
Algorithm which combines scoring-based and 
constraint-based methods (termed as hybrid method). 
Analyzing of CB algorithm concludes that its schema 
can be employed for handling missing values. The 
advantage of the schema is it can generate the node 
ordering. So, prior information about node ordering is 
not required.  

The schema of TPDA1 algorithm is defined as 
following: 
1. Given data set with missing value, apply any 

constraint-based algorithm. 
2. Total node ordering is generated then, by applying 

any algorithm of topological sort 
3. Apply any scoring-based algorithm for incomplete 

data with the resulting node ordering  
 

As a result, like CB Algorithm, TPDA1 consists 
of two phase as well. First phase of TPDA1 is the 
original algorithm of TPDA. Based on the result of 1st 
phase, an algorithm for topological sort is applied in 
order to obtain total node ordering of the resulting 
DAG. Second phase, then, apply i.e. BC algorithm 
(scoring-based algorithm) to learn BN structure.  

The general process of TPDA1 can be described 
to the following phases: 
1st phase : TPDA 
Intermediate : Topological sort algorithm 
2nd phase : BC Algorithm 
 
TPDA2 

Currently, there has not been any algorithm for 
learning BN structure from data with noise (including 
outliers). However, there have been a number 
algorithms for outlier detection such as algorithms 
proposed by Aggarwal et al, Breunig et al, and Kubica 
et al. Regarding their characteristics, those algorithms 
can be combined into TPDA2.  

As a result, general approach for learning BN 
structure from outliers is as follows: 
1. Detect outlier soon as possible to avoid overfitting 

problem 
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2. Remove those outliers 
3. Apply any learning BN structure algorithms 
 

Based on this approach, TPDA1 is modified to the 
following schema, named TPDA2 : 
1st phase : Algorithm for outlier detection & remo-

val 
2nd phase :  TPDA 
Intermediate :  Topological sort algorithm 
3rd  phase :  BC Algorithm 
 
Complet algorithm of TPDA2 is as follow. 
 
Let D is dataset, έ is threshold, G = (V, E) graph structure. 
Also, let u be an upper bound on number of parents a node 
may have. Let iπ  be the set of parents of node i , 

ni ≤≤1  
 

Step 1 (Algorithm for outlier detection & removal): 
       Apply “Partitioned-based Algorithm” to detect 
outliers, and Remove them 

u  0, Old_ iπ ← { } i∀ , ni ≤≤1 , and 
old_Prob  0 
 

Step 2 (TPDA Algorithm): 
       Apply “TPDA algorithm” if it is first iteration, 
otherwise apply TPDA- iπ  
Step 3: 
       Let iπ ← { } i∀ , ni ≤≤1  

For each node i , add to iπ the set of vertices j  

such that for each such j ,there is an edge 
ij − in  

the pdag G   
 
Step 4 (Topological Sort Algorithm): 
       For each undirected edge in the pdag G choose 
an orientation  
       as described below 

If ji −  in a directed edge, and iπ and jπ are 

the corresponding parent sets in G , then cal-
culate the following products  
 { }),(),( ijgigi jival ∪×= ππ  

 { }),(),( jigjgj ijval ∪×= ππ  

If vali > valj ,then ij ππ ← { }i∪  unless the 

addition of this edge, i.e.  ji −  leads to a cycle in 
the pdag. In that case, choose the reverse 
orientation, and change iπ (instead  
 
 
 
 
 
 

of jπ ). Do similar thing in case valj > vali  

       The sets iπ , ni ≤≤1  obtained by step 4 define 

a DAG since for each node i ,  
       iπ  consists of those nodes that have a directed 

edge to a node i .  
       Generate a total order on the nodes from this DAG 
by performing a topological sort on it. 
 
Step 5 (BC Algorithm) : 
       Apply the “BC algorithm” to find the set of parents of 
each node from  
       incomplete dataset and using the order in step 5.  
       Let iπ be the set of parents, found by BC, of node 

i , i∀  ni ≤≤1  
Let new_Prob = )|(ˆ ii PXg  

 
Step 6: 
       If new_Prob > old_Prob, then 

old_Prob ← new_Prob 
u ← u + 1 

old_ iπ ← iπ  i∀  ni ≤≤1  
Goto Step 2 
 

 Else goto Step 7 
 

Step 7: 
       Output old_ iπ i∀  ni ≤≤1  

 Output old_Prob 
 

Here is below an example of data that will be 
processed by the algorithm above. 
 

Attribute Description of Attribute Value Meaning of 
value 

a1 True VisitAsia Do the patient visite Asia in 
the past period ? a2 False 

b1 True Tuberculosis Do the patient has an 
tuberculosis ? b2 False 

c1 True TubOrLung Do the patient has an 
tuberculosis or cancer ? c2 False 

d1 Abnormal X-Ray How about X-ray test ? d2 Normal 
e1 True Lung Cancer Do the patient has an cancer 

in torax ? e2 False 
f1 True Smoking Do the patient smoke ? f2 False 
g1 True Bronchitis Do the patient has an 

bronchitis ? g2 False 
h1 True Dyspnoea D the patient has a problem 

of respiration ? h2 False 
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Assuming some data-set as belows: 
 

 VisitA
sia 

Smok-
ing 

Tube 
rculosis 

Lung 
Cancer

Tub Or 
Lung 

Bron-
chitis 

X_
Ray

Dysp
noea

1 a2 f1 b2 e2 c2 g2 d2 h2 
2 a2 f1 b2 e2 c2 g1 d2 h1 
3 a2 f1 b2 e2 c2 g2 d2 h2 
4 a2 f1 b2 e2 c2 g2 d2 h2 
5 a2 f2 b2 e2 c2 g2 d2 h2 
6 a2 ? b2 ? c2 g2 d2 ? 
7 a2 f1 b2 e2 c2 g1 d2 h1 
8 a2 f1 b2 e1 c1 g1 d1 h1 
9 ? f2 b2 e2 ? g1 ? h1 
10 a2 f1 b3 e2 C2 g2 d2 h2 
11 a2 f1 b2 e2 C2 g1 d2 h1 
12 a2 f1 b2 e1 C1 g2 d1 h1 
13 a2 f2 b2 e2 C2 g1 d2 h1 
14 a2 f2 ? ? C2 ? d2 h1 
15 a2 f2 ? e2 C2 g1 ? h1 
16 a2 f1 b2 e2 C2 g1 d2 h1 
17 a2 f2 b2 e2 C2 g1 d2 h2 
18 a2 f2 b2 e2 C2 g2 d2 h1 
19 ? f1 b2 e2 ? g2 ? ? 
20 a2 f3 b2 e1 C1 g1 d1 h1 
21 a2 f1 b2 e2 C2 g1 d2 h2 
22 a1 f2 b2 e2 C2 g2 d2 h1 
23 a1 f1 b2 e1 C1 g2 d1 h3 
24 a2 f2 b2 e3 C2 g2 d2 h2 
25 a2 f2 b2 e2 C2 g2 d2 h2 
26 a2 f1 b2 e4 C2 g2 d2 h2 

(“?” : unknown value, or missing value) 
 

Refer to the algorithm above, step 1 will detect 
and delete any dataset recoqnized as “outlier” (consist 
of records no. 10 (b3), 20 (f3), 24 (e3), and 26 (e4). 

Steps 2, 3, and 4 will contract DAG equivalent as 
shown in Fig. 1, and ignore temporally any records 
composed by “?” value. As an last result, considering 
any missing value existing in the DAG in Fig.1, steps 
6 and 7 will constract new DAG as shown in Fig.2 
below. 
 
 

VisitAsia

DyspnoeaX_Ray

TubOrLung

BronchitisLungCancerTuberculosis

Smoking

 

Figure 1. DAG equivalent 
 

VisitAsia

DyspnoeaX_Ray

TubOrLung

BronchitisLungCancerTuberculosis

Smoking

 
Figure 2. Final DAG 

 
FUTURE RESEARCH 
 

One of the characteristics of data mining that 
must be fulfill is scalability (the algorithm must be 
able to proceed any volume of data, not depend to the 
size of memory/memory based algorithm, large scale 
classification process). As consequence, TPDA2 must 
be improved to be more efficient and can be executed 
in storage based approach. Currently, TPDA2 is an 
memory based algorithm (all training data must be 
stored in memory, or must be presented once, or can 
be calssified as memory based algorithm). As 
consequence, TPDA2 algorithm can not be yet applied 
for any voluminous data (bigger than the size of 
memory). 

As an alternative, actually there is a research 
related to this problem. Basic idea applied is an 
discriminative model (by aggregating the prediction 
of multiple classifiers). 
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