
Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://puslit.petra.ac.id/journals/informatics/

SOLVING QUICKEST PATH PROBLEM USING AN EXTENDED
CONCEPT OF TRANSITIVE CLOSURE METHOD

Rolly Intan
Faculty of Industrial Technology, Informatics Engineering Department, Petra Christian University

e-mail: rintan@petra.ac.id

ABSTRACT: A travel company offers a transportation service by picking up customers from certain
places and sending them to the other places. Concerning traffic in time domain function for every path, the
problem is how to find the quickest paths in picking up the customers. The problem may be considered as
the quickest path problem. We may consider the quickest path problem as an extension of the shortest path
problem. The quickest path problem optimizes length of time in visiting some places. The quickest path is
not always the shortest path. In the relation to the problem, this paper proposes an algorithm for solving the
quickest path problem. The algorithm is constructed by modifying a concept of transitive closure method.

Keywords: transitive closure, the quickest path, the shortest path, graph.

INTRODUCTION

Today, the competition in the business world is
very tight, because the number of companies working
in the same field and same place are increasing. One
of the methods to win the competition, a company
should give a better service than the others. For
example, a travel company could give a good service
by arranging a schedule of picking up its customers
by which the customers do not need to wait for long
time to be picked up as well as waste their time in the
car due to unnecessary long trip. By considering that
every connecting path (street) has different degree of
traffic in time domain function, the problem is how to
find the quickest paths if the car departures at a
certain time in picking up the customers. We may
consider the problem as the quickest path problem.
The quickest path is not always the shortest path.
Since every path in the quickest path problem as
described above is not only weighted by a single
value instead it is represented by a time domain traffic
function, we may consider the quickest path problem
as an extension problem of the shortest path.

To solve this problem, this paper proposes an
algorithm to find the quickest paths by using an
extended concept of Transitive Closure Method.
Simply, a weighted directed graph (digraph) can be
used to represent the connections of all possible
locations of customers, where vertices and edges of
digraph express locations and their paths, respec-
tively. Directions of paths are represented by the
directions of edges. Every weight of each edge is a
traffic time domain function.

The structure of this paper is the following. In
the following section, basic concept of transitive
closure method is described briefly. It is started by
explaining a directed graph, and adjacency matrix as

used to represent the graph. The subsequent section is
devoted to propose an extended concept of transitive
closure in order to solve the quickest path problem. A
simple illustrative example is given to well
understand the concept. Finally, a conclusion is given
to wrap up the paper.

CONCEPT OF TRANSITIVE CLOSURE

Figure 1. An Example of Directed Graph

As explained in [1], let G be a graph (directed
graph). Let B be a matrix whose rows are labeled by
the vertices in the graph and whose columns are
labeled by the same vertices in the same order. The
entry in the ith row and jth column of B, denoted by
bij, is equal to 1 if there is an edge (directed edge)
from the ith vertex to the jth vertex and is 0 otherwise.
The matrix B is called adjacency matrix of the graph
G. For instance, let G be the directed graph in Figure
1. The adjacency matrix is shown in Figure 2.

The graph has 4 vertices (x1, x2, x3 and x4) and 5
directed edges connecting x1 to x2, x1 to x3, x1 to x4, x3
to x4 and x4 to x3.

x1

x2

x3

x4

100

Intan, Solving Quickest Path Problem Using An Extended Concept

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://puslit.petra.ac.id/journals/informatics/

101



















0 1 0 0
1 0 0 0
0 0 0 0
 1 1 1 0

x
x
x
x

 x x x x

4

3

2

1

4321

Figure 2. Adjacency matrix

In many cases the labels of the vertices are not

important. Such a case we will give the matrix
without the label. Thus the matrix in Figure 2 can be
represented simply by:



















=

0 1 0 0
1 0 0 0
0 0 0 0
 1 1 1 0

 B

Suppose that there are n vertices, B2 can be

obtained by the following operation:
2

11 1 11 1

1 1

2 2
11 1

2 2
1

n n

n nn n nn

n

n nn

B B B
b b b b

b b b b

b b

b b

=

   
   =    
      
 
 =  
  

o

L L

M O M o M O M

L L

L

M O M

L

where)}.,{min(sup
1

2
kjik

n

k
bbb

ij
=

=

Similarly, it can be recursively proved that
u s u sB B B+ = o for , {1, , 2},u s n∈ −L and

.12 −≤+≤ nsu

For example, let B be an adjacency matrix as
given in Figure 2 B2 can be calculated and obtained
by operating B to B itself as given by the following
operation.



















=





































=

=

1 0 0 0
0 1 0 0
0 0 0 0
 1 1 0 0

0 1 0 0
1 0 0 0
0 0 0 0
 1 1 1 0

0 1 0 0
1 0 0 0
0 0 0 0
 1 1 1 0

2

o

o BBB

Look, for example, at

1
1}sup{0,0,0,

)}1,1min(),0,1min(),0,1min(),1,0min(sup{
)},min(),,min(),,min(),,sup{min(4314331323121311

2
13

=
=
=

= bbbbbbbbb

Notice the value of 2

13b is 1 because b14 and b43
are both 1, which means there is an edge from vertex
x1 to vertex x4 and from vertex x4 to vertex x3.
Therefore, there is a 2-path from vertex x1 to vertex
x3. In general, we can see that 12 =ijb if and only if

there is a k such that 1),min(=kjik bb , or, in other
words, there is an edge from vertex xi to vertex xk and
from vertex xk to vertex xj. Similarly for 2

24b we have

0
0}sup{0,0,0,

)}0,0min(),1,0min(),0,0min(),1,0min(sup{
)},min(),,min(),,min(),,sup{min(4424342324221421

2
24

=
=
=
= bbbbbbbbb

so that 2
24b = 0 because there are no edges from

vertex x2 to vertex xk and from vertex xk to vertex x4
for any fixed k. In other words, there are no 2-paths
from vertex x2 to vertex x4. We conclude then that

2
ijb =1 if there is a 2-path from vertex xi to vertex xj

and 2
ijb =0 if there is no 2-path from vertex xi to

vertex xj. Similarly, it can be proved that there is a k-
path from xi to xj for nk ≤≤1 if and only if k

ijb =1.
Transitive closure of adjacency matrix B is
represented by:

















=
T
nn

T
n

T
n

T

T

bb

bb
B

L

MOM

L

1

111

where }.{sup
1

1

k
n

k

T
ijij

bb
−

=
=

Here, 1=T
ij

b if and only if there is at least one path
from xi to xj. For example, in the relation to adjacency
matrix B as shown in Figure 2, transitive closure of B
is given by:



















=

1 1 0 0
1 1 0 0
0 0 0 0
 1 1 1 0

 TB

Look, for example, at

1 }sup{0,1,0 },,sup{ 3
33

2
333333 === bbbbT .

JURNAL INFORMATIKA VOL. 6, NO. 2, NOPEMBER 2005: 100 - 104

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://puslit.petra.ac.id/journals/informatics/

102

EXTENDED CONCEPT OF TRANSITIVE
CLOSURE

To solve the quickest path problem, the concept
of transitive closure method as explained in Section 2
is extended as follows. Let },,,{ 21 nxxxX L= be
a set of vertices. R is an extended adjacency matrix as
defined by:



















><><><

><><><
><><><

=

)(,)(,)(,

)(,)(,)(,
)(,)(,)(,

2211

2222222121

1112121111

trtrtr

trtrtr
trtrtr

R

nnnnnnnn

nn

nn

δδδ

δδδ
δδδ

L

MOMM

L

L

where :ijr T Length of Time→ is a function as a
maaping from Tt ∈ time to the length of time (in
seconds/minutes/hours) representing length of time
needed from ix to jx at the time t. }1,0{∈ijδ is a
parameter to determine whether there is a path or not
from ix to jx . If 1=ijδ then there is a path from

ix to jx , otherwise there is no path from ix to jx .
For example, as shown in Table 1, it takes 14 minutes
to go from 1x to 2x at 00.00 as well as 01.00 am.

Table 1. Length of Time from 1x to 2x

T (time) 12r (t) (minutes)
00.00 14
01.00 14
02.00 13
M M

22.00 15
23.00 15

RRR o=2 is a R power 2 adjacency matrix

providing information of connection among every
Xx∈ that can be reached through 2 paths as given

by:





















><><><

><><><
><><><

=

)(,)(,)(,

)(,)(,)(,
)(,)(,)(,

222
2

2
2

2
1

2
1

2
2

2
2

2
22

2
22

2
21

2
21

2
1

2
1

2
12

2
12

2
11

2
11

2

trtrtr

trtrtr
trtrtr

R

nnnnnnnn

nn

nn

δδδ

δδδ
δδδ

L

MOMM

L

L

where)},{min(sup
1

2
kjik

n

k
ij

δδδ
=

= , and

))}(()({inf)(2 trtrtrtr ippjipMpij ++=
∈

 for

}.1),min(|{ == pjippM δδ
R3 is a R power 3 adjacency matrix providing
information of connection that can be reached
through 3 paths, and so on. Since there are n vertexes,
the longest possible path is n-1 paths. Therefore, it is

necessary to look for up to Rn-1 adjacency matrix as
given by:





















><><><

><><><
><><><

=

−−−−−−

−−−−−−

−−−−−−

−

)(,)(,)(,

)(,)(,)(,
)(,)(,)(,

111
2

1
2

1
1

1
1

1
2

1
2

1
22

1
22

1
21

1
21

1
1

1
1

1
12

1
12

1
11

1
11

1

trtrtr

trtrtr
trtrtr

R

n
nn

n
nn

n
n

n
n

n
n

n
n

n
n

n
n

nnnn

n
n

n
n

nnnn

n

δδδ

δδδ
δδδ

L

MOMM

L

L

where a recursive formula for 1−n

ijδ and)(1 tr n
ij
− can

be given by:

)},{min(sup 2

1

1
kj

n
ik

n

k

n
ij δδδ −

=

− = , and

))}(()({inf)(221 trtrtrtr n
ippj

n
ipMp

n
ij

−−

∈

− ++= for

}.1),min(|{ 2 == −
pj

n
ippM δδ

In general, it can be proved that the above formulas
can be represented by:

)},,{min(sup
1

s
kj

u
ik

n

k

su
ij δδδ

=

+ = and

))}(()({inf)(trtrtrtr u
ip

s
pj

u
ipMp

su
ij ++=

∈

+ ,

where }1),min(|{ == s
pj

u
ippM δδ ,

for },2,,1{, −∈ nsu L and .12 −≤+≤ nsu
Finally, a transitive closure adjacency matrix, RT, can
be obtained by the following formulas.





















><><><

><><><
><><><

=

)(,)(,)(,

)(,)(,)(,
)(,)(,)(,

2211

2222222121

1112121111

trtrtr

trtrtr
trtrtr

R

T
nn

T
nn

T
n

T
n

T
n

T
n

T
n

T
n

TTTT

T
n

T
n

TTTT

T

δδδ

δδδ
δδδ

L

MOMM

L

L

where }{sup
1

1

k
ij

n

k

T
ij δδ

−

=
= and }.1|{inf

1

1
==

−

=

k
ij

k
ij

n

k

T
ij rr δ

RT informs all connections among all Xx∈ that can
be reached from all possiblility paths. Moreover, T

ijr
expresses the minimum length of time from xi to xj.
For example, let consider directed graph G as given
in Figure 1, where X = {x1, x2, x3, x4} be the set of
vertices. The length of time needed in every path
(edge) is shown in Table 2.

Suppose that the car departs at 8.00 am, from
Table 2, we can obtain the following adjacency
matrices:



















〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

=

0,0
2,1
0,0
8,1

2,1
0,0
0,0
3,1

0,0
0,0
0,0
4,1

0,0
0,0
0,0
0,0

R



















〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

=

4,1
0,0
0,0
5,1

0,0
4,1
0,0

10,1

0,0
0,0
0,0
0,0

0,0
0,0
0,0
0,0

2R

Intan, Solving Quickest Path Problem Using An Extended Concept

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://puslit.petra.ac.id/journals/informatics/

103



















〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

=

0,0
6,1
0,1
12,1

6,1
0,0
0,0
7,1

0,0
0,0
0,0
0,0

0,0
0,0
0,0
0,0

3R

Table 2. Length of time

t(time) x1-x2
(hours)

x1-x3
(hours)

x1-x4
(hours)

x4-x3
(hours)

x3-x4
(hours)

00.00 5 3 1 2 2
01.00 2 4 5 6 6
02.00 2 3 5 7 7
03.00 4 6 4 2 2
04.00 2 5 7 4 4
05.00 8 9 6 5 5
06.00 5 7 4 8 8
07.00 4 10 7 9 9
08.00 4 3 8 2 2
09.00 6 10 9 4 5
10.00 4 6 9 8 9
11.00 5 10 5 2 2
12.00 4 9 6 7 8
13.00 6 9 12 10 10
14.00 11 7 9 5 5
15.00 16 10 5 8 8
16.00 7 8 12 9 9
17.00 7 4 11 6 6
18.00 3 6 12 8 8
19.00 9 18 16 7 7
20.00 10 8 5 9 9
21.00 10 12 8 6 6
22.00 6 7 10 10 19
23.00 10 9 7 10 15

R informs connection between every two

vertexes that can be reached in only one path. It can
be clearly seen that there are 4 directed paths
connecting x1 to x2, x1 to x3, x1 to x4 and x3 to x4 with
the length of time 4, 3, 8 and 2 hours, respectively.

R2 informs connection between every two
vertexes that can be reached in two paths. In this case,
there is only one path from x1 to x4 via x3 with the
length of time 5 hours (3 hours from x1 to x3 plus 2
hours from x3 to x4). Thus, it is faster going from x1 to
x4 via x3 than directly going from x1 to x4.

R3 informs connection between every two
vertexes that can be reached in three paths. Here,
there is no connection that can be reached in three
paths.

Finally, from R, R2 and R3, we can provide RT as
follows.



















〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

〉〈
〉〈
〉〈
〉〈

=

0,0
2,1
0,0
5,1

0,0
0,0
0,0
3,1

0,0
0,0
0,0
4,1

0,0
0,0
0,0
0,0

TR

From RT, if the car departs at 8.00 am and starts
from x1, it takes 4 hours to reach x2, 3 hours for going
to x3 and 5 hours to go to x4 via x3. Also, the car needs
2 hours for going from x3 to x4. Otherwise, there is no
any more paths for other connections.

As explained in Section 1, the car has to pick up
some customers from different places. Therefore, the
problem is how to find the best order of picking up
the customers in order to get the most optimum
(minimum) total length of time. Let the car has to
pick up m customers from m different places. In order
to find the most optimum of total time, we have to
examine all possible sequential orders of picking up
the customers. Thus, the total combinations of
sequential orders is equal to m!. If the car starts from
x0 and it has to pick up three customers, x2, x4 and x6,
then there are 6 (= 3!) combinations of sequential
orders that are:
x0→x2→x4→x6, x0→x2→x6→x4, x0→x4→x2→x6,
x0→x4→x6→x2, x0→x6→x2→x4 and x0→x6→x4→x2.

Total time of every combination of sequential
order is calculated. The sequential order that has the
most optimum (minimum) length of time will be
chosen as the order of picking up the customers.

For simple example as given in Figure 1, let the
car departures from x1 and it has to pick up two
customers, x3 and x4. There are two possible orders
for picking up the customers: x1→x3→x4 and
x1→x4→x3. Let say that the car departs at 8.00 am. As
given in the previous calculations, the best sequential
order is x1→x3→x4. Total time required to complete
picking up x3 and x4 is 5 hours. The car takes 3 hours
to pick up x3, and then 2 hours to pick up x4.

CONCLUSION

This paper proposed an extended concept of
transitive closure method in order to solve the
quickest path problem. The concept was started by
considering the weight of each edge of a directed
graph is given by a traffic time domain function. To
represent such kind of graph, an extended concept of
adjacency matrix was introduced, where every cell of
the matrix consists of two parameters, }1,0{∈ijδ , to
determine existence of edge, and rij(t), a traffic time
domain function from xi to xj. Finally, the extended
transitive closure of the adjacency matrix was
proposed to solve the quickest path problem.

Implementation of the proposed concept can be
found in a final project written by Suchiana Cahyono
[4].

JURNAL INFORMATIKA VOL. 6, NO. 2, NOPEMBER 2005: 100 - 104

Jurusan Teknik Informatika, Fakultas Teknologi Industri – Universitas Kristen Petra
http://puslit.petra.ac.id/journals/informatics/

104

REFERENCES

1. Bakken, James A. Anderson, Discrete Mathe-

matics with Combination.2 nd.

2. “Graph.” National Institute of Standards and
Technology (NIST). 10 Januari. 2005. <http://
www.nist.gov/dads/HTML/graph.html>

3. Klir, George J., and Bo Yuan. Fuzzy Sets and
Fuzzy Relation. Theory and Applications. New
Jersey: Prentice Hall, 1995.

4. Shuciana Chahyono, Perancangan Dan Pem-
buatan Aplikasi Pencarian Rute Jalan Tercepat
Berdasarkan Tingkat Kemacetan Lalu Lintas
Menggunakan Transitive Closure Method,
Skripsi, Jurusan Teknik Informatika, UK. Petra,
2005.

