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ABSTRACT: A travel company offers a transportation service by picking up customers from certain 
places and sending them to the other places. Concerning traffic in time domain function for every path, the 
problem is how to find the quickest paths in picking up the customers. The problem may be considered as 
the quickest path problem. We may consider the quickest path problem as an extension of the shortest path 
problem. The quickest path problem optimizes length of time in visiting some places. The quickest path is 
not always the shortest path. In the relation to the problem, this paper proposes an algorithm for solving the 
quickest path problem. The algorithm is constructed by modifying a concept of transitive closure method. 
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INTRODUCTION 

Today, the competition in the business world is 
very tight, because the number of companies working 
in the same field and same place are increasing. One 
of the methods to win the competition, a company 
should give a better service than the others. For 
example, a travel company could give a good service 
by arranging a schedule of picking up its customers 
by which the customers do not need to wait for long 
time to be picked up as well as waste their time in the 
car due to unnecessary long trip. By considering that 
every connecting path (street) has different degree of 
traffic in time domain function, the problem is how to 
find the quickest paths if the car departures at a 
certain time in picking up the customers. We may 
consider the problem as the quickest path problem. 
The quickest path is not always the shortest path. 
Since every path in the quickest path problem as 
described above is not only weighted by a single 
value instead it is represented by a time domain traffic 
function, we may consider the quickest path problem 
as an extension problem of the shortest path.  

To solve this problem, this paper proposes an 
algorithm to find the quickest paths by using an 
extended concept of Transitive Closure Method. 
Simply, a weighted directed graph (digraph) can be 
used to represent the connections of all possible 
locations of customers, where vertices and edges of 
digraph express locations and their paths, respec-
tively. Directions of paths are represented by the 
directions of edges. Every weight of each edge is a 
traffic time domain function.  

The structure of this paper is the following. In 
the following section, basic concept of transitive 
closure method is described briefly. It is started by 
explaining a directed graph, and adjacency matrix as 

used to represent the graph. The subsequent section is 
devoted to propose an extended concept of transitive 
closure in order to solve the quickest path problem. A 
simple illustrative example is given to well 
understand the concept. Finally, a conclusion is given 
to wrap up the paper. 

 
 
CONCEPT OF TRANSITIVE CLOSURE 
 

Figure 1. An Example of  Directed Graph 
 

As explained in [1], let G be a graph (directed 
graph). Let B be a matrix whose rows are labeled by 
the vertices in the graph and whose columns are 
labeled by the same vertices in the same order. The 
entry in the ith row and jth column of B, denoted by 
bij, is equal to 1 if there is an edge (directed edge) 
from the ith vertex to the jth vertex and is 0 otherwise. 
The matrix B is called adjacency matrix of the graph 
G. For instance, let G be the directed graph in Figure 
1. The adjacency matrix is shown in Figure 2. 

The graph has 4 vertices (x1, x2, x3 and x4) and 5 
directed edges connecting x1 to x2, x1 to x3, x1 to x4, x3 
to x4 and x4 to x3.  

x1 

x2 

x3 

x4 
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Figure 2. Adjacency matrix 

 
In many cases the labels of the vertices are not 

important. Such a case we will give the matrix 
without the label. Thus the matrix in Figure 2 can be 
represented simply by: 
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Suppose that there are n vertices, B2 can be 

obtained by the following operation: 
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Similarly, it can be recursively proved that       
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For example, let B be an adjacency matrix as 
given in Figure 2 B2 can be calculated and obtained 
by operating B to B itself as given by the following 
operation.  
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Look, for example, at 
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Notice the value of 2

13b  is 1 because b14 and b43 
are both 1, which means there is an edge from vertex 
x1 to vertex x4 and from vertex x4 to vertex x3. 
Therefore, there is a 2-path from vertex x1 to vertex 
x3. In general, we can see that 12 =ijb  if and only if 

there is a k such that 1),min( =kjik bb , or, in other 
words, there is an edge from vertex xi to vertex xk and 
from vertex xk to vertex xj. Similarly for 2

24b  we have    
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0}sup{0,0,0,       

)}0,0min(),1,0min(),0,0min(),1,0min(sup{       
)},min(),,min(),,min(),,sup{min( 4424342324221421

2
24

=
=
=
= bbbbbbbbb

so that 2
24b = 0 because there are no edges from 

vertex x2 to vertex xk and from vertex xk to vertex x4 
for any fixed k. In other words, there are no 2-paths 
from vertex x2 to vertex x4. We conclude then that 

2
ijb =1 if there is a 2-path from vertex xi to vertex xj 

and 2
ijb =0 if there is no 2-path from vertex xi to 

vertex xj. Similarly, it can be proved that there is a k-
path from xi to xj for nk ≤≤1  if and only if k

ijb =1. 
Transitive closure of adjacency matrix B is 
represented by: 

















=
T
nn

T
n

T
n

T

T

bb

bb
B

L

MOM

L

1

111

 

where }.{sup
1

1

k
n

k

T
ijij

bb
−

=
=  

Here, 1=T
ij

b  if and only if there is at least one path 
from xi to xj. For example, in the relation to adjacency 
matrix B as shown in Figure 2, transitive closure of B 
is given by: 
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EXTENDED CONCEPT OF TRANSITIVE 
CLOSURE 
 

To solve the quickest path problem, the concept 
of transitive closure method as explained in Section 2 
is extended as follows. Let },,,{ 21 nxxxX L= be 
a set of vertices. R is an extended adjacency matrix as 
defined by: 
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where :ijr T Length of Time→  is a function as a 
maaping from Tt ∈ time to the length of time (in 
seconds/minutes/hours) representing length of time 
needed from ix  to jx  at the time t. }1,0{∈ijδ  is a 
parameter to determine whether there is a path or not 
from ix  to jx . If 1=ijδ then there is a path from 

ix  to jx , otherwise there is no path from ix  to jx . 
For example, as shown in Table 1, it takes 14 minutes 
to  go from 1x  to 2x  at 00.00 as well as 01.00 am. 
 
Table 1. Length of Time from 1x  to 2x  

T (time) 12r (t) (minutes) 
00.00 14 
01.00  14 
02.00 13 
M  M  

22.00 15 
23.00 15 

 
RRR o=2  is a R power 2 adjacency matrix 

providing information of connection among every 
Xx∈ that can be reached through 2 paths as given 

by:  
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R3 is a R power 3 adjacency matrix providing 
information of connection that can be reached 
through 3 paths, and so on. Since there are n vertexes, 
the longest possible path is n-1 paths. Therefore, it is 

necessary to look for up to Rn-1 adjacency matrix as 
given by:  
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where a recursive formula for 1−n
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In general, it can be proved that the above formulas 
can be represented by: 
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Finally, a transitive closure adjacency matrix, RT, can 
be obtained by the following formulas. 
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RT informs all connections among all Xx∈ that can 
be reached from all possiblility paths. Moreover, T

ijr  
expresses the minimum length of time from xi to xj. 
For example, let consider directed graph G as given 
in Figure 1, where X = {x1, x2, x3, x4} be the set of 
vertices. The length of time needed in every path 
(edge) is shown in Table 2.  
 

Suppose that the car departs at 8.00 am, from 
Table 2, we can obtain the following adjacency 
matrices: 
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Table 2. Length of time 

t(time) x1-x2  
(hours) 

x1-x3 
(hours) 

x1-x4  
(hours) 

x4-x3  
(hours) 

x3-x4  
(hours) 

00.00 5 3 1 2 2 
01.00 2 4 5 6 6 
02.00 2 3 5 7 7 
03.00 4 6 4 2 2 
04.00 2 5 7 4 4 
05.00 8 9 6 5 5 
06.00 5 7 4 8 8 
07.00 4 10 7 9 9 
08.00  4 3 8 2 2 
09.00 6 10 9 4 5 
10.00 4 6 9 8 9 
11.00 5 10 5 2 2 
12.00 4 9 6 7 8 
13.00 6 9 12 10 10 
14.00 11 7 9 5 5 
15.00 16 10 5 8 8 
16.00 7 8 12 9 9 
17.00 7 4 11 6 6 
18.00 3 6 12 8 8 
19.00 9 18 16 7 7 
20.00 10 8 5 9 9 
21.00 10 12 8 6 6 
22.00 6 7 10 10 19 
23.00 10 9 7 10 15 

 
R informs connection between every two 

vertexes that can be reached in only one path. It can 
be clearly seen that there are 4 directed paths 
connecting x1 to x2, x1 to x3, x1 to x4 and x3 to x4 with 
the length of time 4, 3, 8 and 2 hours, respectively. 

R2 informs connection between every two 
vertexes that can be reached in two paths. In this case, 
there is only one path from x1 to x4 via x3 with the 
length of time 5 hours (3 hours from x1 to x3 plus 2 
hours from x3 to x4). Thus, it is faster going from x1 to 
x4 via x3 than directly going from x1 to x4.  

R3 informs connection between every two 
vertexes that can be reached in three paths. Here, 
there is no connection that can be reached in three 
paths. 

Finally, from R, R2 and R3, we can provide RT as 
follows. 
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From RT, if the car departs at 8.00 am and starts 
from x1, it takes 4 hours to reach x2, 3 hours for going 
to x3 and 5 hours to go to x4 via x3. Also, the car needs 
2 hours for going from x3 to x4. Otherwise, there is no 
any more paths for other connections.   

As explained in Section 1, the car has to pick up 
some customers from different places. Therefore, the 
problem is how to find the best order of picking up 
the customers in order to get the most optimum 
(minimum) total length of time. Let the car has to 
pick up m customers from m different places. In order 
to find the most optimum of total time, we have to 
examine all possible sequential orders of picking up 
the customers. Thus, the total combinations of 
sequential orders is equal to m!. If the car starts from 
x0 and it has to pick up three customers, x2, x4 and x6, 
then there are 6 (= 3!) combinations of sequential 
orders that are:  
x0→x2→x4→x6,  x0→x2→x6→x4,  x0→x4→x2→x6,  
x0→x4→x6→x2,  x0→x6→x2→x4 and x0→x6→x4→x2. 

Total time of every combination of sequential 
order is calculated. The sequential order that has the 
most optimum (minimum) length of time will be 
chosen as the order of picking up the customers. 

For simple example as given in Figure 1, let the 
car departures from x1 and it has to pick up two 
customers, x3 and x4. There are two possible orders 
for picking up the customers: x1→x3→x4 and 
x1→x4→x3. Let say that the car departs at 8.00 am. As 
given in the previous calculations, the best sequential 
order is x1→x3→x4. Total time required to complete 
picking up x3 and x4 is 5 hours. The car takes 3 hours 
to pick up x3, and then 2 hours to pick up x4. 
 
 
CONCLUSION 

This paper proposed an extended concept of 
transitive closure method in order to solve the 
quickest path problem. The concept was started by 
considering the weight of each edge of a directed 
graph is given by a traffic time domain function. To 
represent such kind of graph, an extended concept of 
adjacency matrix was introduced, where every cell of 
the matrix consists of two parameters, }1,0{∈ijδ , to 
determine existence of edge, and rij(t), a traffic time 
domain function from xi to xj. Finally, the extended 
transitive closure of the adjacency matrix was 
proposed to solve the quickest path problem. 

Implementation of the proposed concept can be 
found in a final project written by Suchiana Cahyono 
[4].   
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