ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PRODUKSI, KONSUMSI DAN IMPOR KEDELAI DI INDONESIA

Putri Meliza Sari, Hasdi Aimon, Efrizal Syofyan

ABSTRACT

This study aims to analyze (1) the effect of land area, the price of local soybean, seed and fertilizer to soybean production in Indonesia, (2) the effect of soybean production, soybean import, per capita income, and consumption of soy previous period to soybean consumption in Indonesia, (3) the effect of per capita income, the level of the real exchange rate and the price of imported soybean to soybean import in Indonesia. The data source is a secondary data as well as data in the form of time series from 1983 to 2012. Research use simultaneous equation model analysis in the form of Indirect Least Squares (ILS). The effect of the land area of soybean and fertilizer have significant effect on soybean production with regression coefficients 1.26 and 0.84. Local soybean prices and soybean seed does not have significant impact on soybean production. Soybean production, Soybean import and consumption of soybean previous period have significant effect on soybean consumption with regresion coefficients 0.72, 0.85 and 0.34, but per capita income there is no significant effect on soybean consumption. Per capita income and the price of imported soybean have significant effect on soybean import with regression coefficients 0.11 and 226.6. Value of the real exchange rate of the rupiah against the U.S. dollar there is no significant effect on soybean import.

Keywords : Soybean Production, Soybean Consumption and Soybean Import.

A. Pendahuluan

Upaya peningkatan kedelai baik dari kuantitas maupun kualitas terus diupayakan oleh pemerintah. Di Indonesia sampai saat ini masih terjadi kesenjangan yang sangat lebar antara produksi dan konsumsi kedelai. Produksi kedelai dalam negeri tidak mampu memenuhi kebutuhan terhadap kedelai di dalam negeri. Sehingga untuk memenuhi kebutuhan kedelai tersebut, pemerintah melakukan kebijakan impor kedelai.

Peningkatan konsumsi kedelai yang terjadi di dalam negeri akan meningkatkan impor kedelai karena produksi kedelai di dalam negeri belum mampu memenuhi kebutuhan masyarakat terhadap kedelai, bahkan produksi kedelai di dalam negeri cenderung turun. Untuk lebih jelasnya dapat dilihat data pada tabel 1 berikut ini.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tahun</td>
<td>Produksi (ton)</td>
<td>Perkembangan (%)</td>
<td>Konsumsi (ton)</td>
<td>Perkembangan (%)</td>
</tr>
<tr>
<td>2000</td>
<td>1.017.634</td>
<td>-</td>
<td>2.295.316</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>826.936</td>
<td>-18,74</td>
<td>1.963.351</td>
<td>-14,46</td>
</tr>
<tr>
<td>2002</td>
<td>663.056</td>
<td>-19,82</td>
<td>2.068.309</td>
<td>5,35</td>
</tr>
<tr>
<td>2003</td>
<td>671.600</td>
<td>1,29</td>
<td>1.864.317</td>
<td>-9,86</td>
</tr>
<tr>
<td>2004</td>
<td>723.482</td>
<td>7,73</td>
<td>1.939.276</td>
<td>4,02</td>
</tr>
<tr>
<td>2005</td>
<td>808.353</td>
<td>11,73</td>
<td>2.044.531</td>
<td>5,43</td>
</tr>
<tr>
<td>2006</td>
<td>747.611</td>
<td>-7,51</td>
<td>1.879.755</td>
<td>-8,06</td>
</tr>
<tr>
<td>2007</td>
<td>592.534</td>
<td>-20,74</td>
<td>2.011.534</td>
<td>7,01</td>
</tr>
<tr>
<td>2008</td>
<td>775.710</td>
<td>30,91</td>
<td>1.955.819</td>
<td>-2,77</td>
</tr>
<tr>
<td>2009</td>
<td>974.515</td>
<td>25,63</td>
<td>2.295.877</td>
<td>17,39</td>
</tr>
<tr>
<td>2010</td>
<td>970.031</td>
<td>-0,46</td>
<td>2.651.871</td>
<td>15,51</td>
</tr>
<tr>
<td>2011</td>
<td>851.286</td>
<td>-12,24</td>
<td>2.944.320</td>
<td>11,03</td>
</tr>
<tr>
<td>2012</td>
<td>843.153</td>
<td>-0,96</td>
<td>3.056.693</td>
<td>3,82</td>
</tr>
</tbody>
</table>

Sumber : Departemen Pertanian, 2013

Tingkat konsumsi ini cenderung meningkat dalam 13 tahun terakhir, namun produksi justru menurun, akibatnya terjadi peningkatan impor. Dari total konsumsi masyarakat terhadap kedelai, hanya rata-rata 40 persen saja yang dapat dipenuhi oleh produksi kedelai di dalam negeri, sisanya hampir 60

Dalam kegiatan produksi petani dihadapi permasalahan dalam menentukan berapa banyak input yang harus digunakan atau berapa banyak output yang harus dihasilkan untuk memaksimalkan keuntungan atau laba bersih untuk pertaniannya. Dari masing-masing input yang digunakan akan menghasilkan output yang maksimum (Debertin 2012: 82). Dalam penelitian ini yang menjadi input bagi petani kedelai adalah: lahan, benih dan pupuk.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Luas lahan (ha)</th>
<th>Perkembangan (%)</th>
<th>Harga Benih (Rp/kg)</th>
<th>Perkembangan (%)</th>
<th>Harga Pupuk (Rp/kg)</th>
<th>Perkembangan (%)</th>
<th>Harga kedelai lokal (Rp)</th>
<th>Perkembangan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>824.485</td>
<td>-</td>
<td>1.788</td>
<td>-</td>
<td>1.115</td>
<td>-</td>
<td>1.335</td>
<td>-</td>
</tr>
<tr>
<td>2001</td>
<td>678.900</td>
<td>-17,66</td>
<td>2.096</td>
<td>17,23</td>
<td>1.200</td>
<td>7,62</td>
<td>2.035</td>
<td>52,43</td>
</tr>
<tr>
<td>2002</td>
<td>544.522</td>
<td>-19,79</td>
<td>2.471</td>
<td>17,89</td>
<td>1.200</td>
<td>0,00</td>
<td>2.462</td>
<td>20,98</td>
</tr>
<tr>
<td>2003</td>
<td>526.798</td>
<td>-3,25</td>
<td>3.500</td>
<td>41,64</td>
<td>1.350</td>
<td>12,50</td>
<td>2.412</td>
<td>-2,03</td>
</tr>
<tr>
<td>2004</td>
<td>565.100</td>
<td>7,27</td>
<td>4.700</td>
<td>34,29</td>
<td>1.350</td>
<td>0,00</td>
<td>2.725</td>
<td>12,98</td>
</tr>
<tr>
<td>2005</td>
<td>621.540</td>
<td>9,99</td>
<td>4.700</td>
<td>0,00</td>
<td>1.250</td>
<td>-7,41</td>
<td>3.157</td>
<td>15,85</td>
</tr>
<tr>
<td>2006</td>
<td>580.540</td>
<td>-6,60</td>
<td>6.125</td>
<td>30,32</td>
<td>1.390</td>
<td>11,20</td>
<td>4.101</td>
<td>29,90</td>
</tr>
<tr>
<td>2007</td>
<td>459.116</td>
<td>-20,92</td>
<td>7.010</td>
<td>14,45</td>
<td>1.390</td>
<td>0,00</td>
<td>4.846</td>
<td>18,17</td>
</tr>
<tr>
<td>2008</td>
<td>590.956</td>
<td>28,72</td>
<td>9.133</td>
<td>30,29</td>
<td>1.390</td>
<td>0,00</td>
<td>7.788</td>
<td>60,71</td>
</tr>
<tr>
<td>2009</td>
<td>722.791</td>
<td>22,31</td>
<td>9.133</td>
<td>0,00</td>
<td>1.390</td>
<td>0,00</td>
<td>7.644</td>
<td>-1,85</td>
</tr>
<tr>
<td>2010</td>
<td>660.823</td>
<td>-8,57</td>
<td>9.133</td>
<td>0,00</td>
<td>1.825</td>
<td>31,29</td>
<td>7.556</td>
<td>-1,15</td>
</tr>
<tr>
<td>2011</td>
<td>662.251</td>
<td>0,22</td>
<td>9.945</td>
<td>8,89</td>
<td>1.825</td>
<td>0,00</td>
<td>7.688</td>
<td>1,75</td>
</tr>
<tr>
<td>2012</td>
<td>567.624</td>
<td>-14,29</td>
<td>12.899</td>
<td>29,70</td>
<td>1.875</td>
<td>2,74</td>
<td>7.631</td>
<td>-0,74</td>
</tr>
</tbody>
</table>

Data : BPS, Departemen Pertanian, 2013

Perkembangan jumlah lahan pertanian tanaman kedelai cenderung menurun, pada tahun 2000 luas lahan kedelai adalah 824.485 hektar menjadi

Dengan menganalisis faktor-faktor yang mempengaruhi produksi diatas, diharapkan petani dapat terus meningkatkan produksi kedelai, agar konsumsi terhadap kedelai dapat dipenuhi. Konsumsi kedelai di Indonesia sangat tinggi dan cenderung mengalami peningkatan setiap tahunnya.

B. Metode Penelitian

Data yang digunakan dalam penelitian ini adalah data sekunder yang didapat dari berbagai sumber yaitu BPS dan Departemen Pertanian. Uji prasyarat analisis (ujj asumsi klasik) dalam penelitian ini adalah Uji Stationeritas, Uji multikoleneriaritas, Uji normalitas, Uji Autokolerasi dan Uji heterokedastisitas.

1. Kajian Teori

Dalam kegiatan produksi, petani dihadapi permasalahan dalam menentukan berapa banyak input yang harus digunakan atau berapa banyak output yang harus dihasilkan untuk memaksimalkan keuntungan atau laba bersih untuk pertaniannya. Dari masing-masing input yang digunakan akan menghasilkan output yang maksimum. Apabila petani menggunakan input yang lebih dari satu, maka fungsi produksinya, (Debertin 2012: 82).

Harga suatu barang selalu dipandang sebagai faktor yang sangat penting dalam menentukan penawaran barang tersebut. Oleh sebab itu teori penawaran terutama menumpukan perhatiannya kepada hubungan diantara tingkat harga dengan jumlah yang ditawarkan. Hukum penawaran adalah suatu pernyataan yang menjelaskan tentang hubungan antara harga suatu barang dengan jumlah barang tersebut yang ditawarkan oleh penjual. Dan hukum penawaran pada dasarnya menyatakan bahwa makin tinggi harga suatu barang, semakin banyak jumlah barang tersebut akan ditawarkan oleh penjual (Sukirno, 2002: 87).Selain faktor harga yang telah di jelaskan di atas, keputusan penawaran juga dipengaruhi oleh faktor lain
selain harga produk tersebut, biaya produksi tergantung pada harga input dan produksi teknologi. Peningkatan harga input juga menyebabkan kurva penawaran bergeser. Jika petani menghadapi biaya input yang lebih tinggi, maka kurva penawaran akan bergeser ke kiri- ia akan memproduksi kurang dari harga pasar tertentu, sehingga petani perlu meningkatkan harga agar petani dapat terus melakukan produksi (Case, 2007:73).

Pada dasarnya perdagangan berlangsung karena hal itu memang menguntungkan. Setiap orang memiliki kemampuan atau sumber daya yang bervariasi dan berbeda satu sama lain serta keinginan untuk mengkonsumsi barang dalam porsinya berbeda satu sama lain. Sering kali seseorang menghendaki sesuatu yang tidak dimilikinya dan hal tersebut bisa diperolehnya dari orang lain. Perbedaan preferensi (kebutuhan, keinginan) serta variasi sumber daya fisik dan finansial yang dimiliki setiap orang membuka peluang bagi berlangsungnya suatu
pertukaran atau perdagangan yang menguntungkan kedua belah pihak. Sebuah perekonomian terbuka, yakni perekonomian yang berinteraksi secara terbuka dengan perekonomian di negara lain di seluruh dunia, melalui 2 cara, yaitu: membeli serta menjual barang dan jasa dalam pasar produk dunia. Membeli barang di pasar dunia berarti suatu negara melakukan impor, impor yaitu: segenap barang dan jasa yang dibuat diluar negeri yang dijual di dalam negeri. Faktor-faktor yang mempengaruhinya adalah: selera konsumen terhadap barang yang diproduksi di dalam dan luar negeri, harga barang di dalam dan luar negeri, kurs yang menentukan jumlah mata uang dan yang dibutuhkan untuk membeli mata uang asing, pendapatan konsumen, ongkos angkut barang antar bangsa, kebijakan pemerintah mengenai perdagangan internasional, dengan berubahnya variabel-variabel tersebut dari waktu ke waktu akan berubah pula jumlah perdagangan internasional (Mankiw, 2008:210).

2. Kerangka Konseptual

Dengan melakukan elaborasi teori-teori diatas, maka dapat digambarkan kerangka berfikir seperti berikut ini:

Gambar 1. Kerangka Konseptual
3. Hipotesis Penelitian

4. Model Analisis

Pada penelitian ini terdapat dua variabel yaitu variabel endogen dan variabel eksogen. Variabel endogen adalah variabel yang nilainya ditetapkan atau ditetapkan oleh model sebagai akibat adanya hubungan antara variabel, sedangkan variabel eksogen adalah variabel yang nilainya ditetapkan diluar model. Adapun persamaan-persamaan dalam penelitian ini adalah sebagai berikut:

1. \[Q_t = \lambda_0 + \lambda_1 H_a + \lambda_2 P_l + \lambda_3 B_t + \lambda_4 P_t + \varepsilon_1 \] ..(1)
2. \[M_t = \beta_0 + \beta_1 Y_t + \beta_2 E_t + \beta_3 P_m + \varepsilon_2 \] ..(2)
3. \[C_t = \gamma_0 + \gamma_1 Q_t + \gamma_2 M_t + \gamma_3 Y_t + \gamma_4 C_{t-1} + \varepsilon_3 \] ..(3)

Reduksi model bertujuan untuk menentukan variabel endogen dan eksogen dalam model yang dianalisis. Dari ketiga persamaan diatas, persamaan konsumsi adalah persamaan yang akan dilakukan proses reduced form. Hasil dari proses reduced form adalah sebagai berikut:

\[C_t = \Pi_0 + \Pi_1 L_h + \Pi_2 P_l + \Pi_3 B_t + \Pi_4 P_t + \Pi_5 Y_t + \Pi_6 E_t + \Pi_7 P_m + \Pi_8 C_{t-1} + \mu_2 \]

Dari persamaan konsumsi kedelai di atas dapat diketahui bahwa variabel eksogen (predetermine)ya adalah luas lahan kedelai, benih kedelai, pupuk, pendapatan perkapita, tingkat kurs rupiah terhadap dollar, harga kedelai impor, harga kedelai lokal dan konsumsi kedelai periode sebelumnya.
a. Uji Identifikasi

Masalah yang sering terjadi dan sering dijumpai dalam model ekonometrika yang lebih dari satu persamaan adalah masalah identifikasi. Untuk menyelesaikan masalah identifikasi ini maka harus dilakukan pengujian atau uji persyaratan agar diketahui koefisien yang ditaksir. Persyaratan ini disebut dengan kondisi identifikasi. Dalam pengujian identifikasi ada dua macam, yaitu: order condition dan rank condition. (Gujarati, 2006: 268).

Hasil uji identifikasi menggunakan order condition terhadap persamaan konsumsi kedelai adalah sebagai berikut:

\[
K = 8 \quad (L_{ht}, \; P_{ht}, \; P_{pt}, \; P_{pht}, \; Y_{t}, \; E_{t}, \; P_{mt}, \; C_{t,1})
\]
\[
k = 3 \quad (Y_{t}, \; P_{ht}, \; C_{t,1})
\]
\[
m = 3 \quad (Q_{s}, \; M_{t}, \; C_{t})
\]

Persamaan Konsumsi :

\[
K - k > m - 1
\]
\[
8 - 3 > 3 - 1
\]
\[
5 > 2 \quad \text{Over Identifikasi}
\]

Jadi terjadi over identifikasi pada persamaan diatas. Sehingga penyelesiainnya dapat dilakukan dengan one stage least squared (OSLS).

C. Hasil dan Pembahasan

HASIL

1. Analisis Induktif

a. Uji Stationeritas

Uji stasioner yang digunakan dalam penelitian ini adalah uji akar unit (unit root test) yang dikembangkan oleh David Dickey dan Wayne Fuller, atau yang lebih dikenal dengan uji akar unit Dickey-Fuller (DF).

Tabel 2. Uji Stationer

<table>
<thead>
<tr>
<th>Nama Variabel</th>
<th>Tingkat</th>
<th>Nilai Probabilitas</th>
<th>Tingkat α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produksi kedelai</td>
<td>2nd difference</td>
<td>0,0000</td>
<td>0,05</td>
</tr>
<tr>
<td>Luas lahan kedelai</td>
<td>2nd difference</td>
<td>0,0000</td>
<td>0,05</td>
</tr>
<tr>
<td>Harga kedelai lokal</td>
<td>1st difference</td>
<td>0,0003</td>
<td>0,05</td>
</tr>
<tr>
<td>Pupuk</td>
<td>2nd difference</td>
<td>0,0000</td>
<td>0,05</td>
</tr>
<tr>
<td>Benih</td>
<td>2nd difference</td>
<td>0,0000</td>
<td>0,05</td>
</tr>
</tbody>
</table>
Konsumsi kedelai 1^{st} difference 0,0000 0,05
Pendapatan Perkapita 2^{nd} difference 0,0000 0,05
Impor kedelai 1^{st} difference 0,0000 0,10
Tingkat Kurs Rill 1^{st} difference 0,0000 0,10
Harga Kedelai Impor 2^{nd} difference 0,0006 0,10

Sumber: Hasil pengolahan data dengan Eviews4, n=30

Apabila nilai statistik Dickey-Fuller (Dickey-Fuller test statistic) probabilitasnya kecil dari $\alpha = 0,05$ (untuk persamaan produksi dan konsumsi) dan 0,10 (untuk persamaan impor), maka H_0 ditolak atau H_a diterima yang artinya variabel tersebut stasioner. Variabel tersebut dapat stasioner apakah itu pada level, 1^{st} difference, atau 2^{nd} difference. Sebaliknya apabila nilai statistik Dickey-Fuller probabilitasnya besar dari $\alpha = 0,05$ dan 0,10, maka H_0 diterima atau H_a ditolak yang artinya variabel tersebut tidak stasioner atau mengandung masalah unit root. Tabel dibawah ini menjelaskan masing-masing variabel stasioner pada tingkat tertentu, yaitu pada 1^{st} difference, dan 2^{nd} difference.

Tabel 2 menjelaskan masing-masing variabel stasioner pada tingkat tertentu, yaitu pada 1^{st} difference, dan 2^{nd} difference. Dari tabel tersebut dapat diketahui bahwa variabel harga kedelai lokal dan konsumsi kedelai memiliki nilai probabilitas yang kecil dari $\alpha = 0,05$ pada 1^{st} difference, dan variabel impor kedelai dan tingkat kurs riil memiliki nilai probabilitas yang kecil dari $\alpha = 0,10$ pada 1^{st} difference, oleh karena itu variabel-variabel tersebut stasioner pada 1^{st} difference. Variabel produksi kedelai, luas lahan kedelai, pupuk, benih, pendapatan perkapita impor stasioner pada 2^{nd} difference dikarenakan masing-masing variabel tersebut nilai probabilitasnya kecil dari $\alpha = 0,05$ pada 2^{nd} difference, dan variabel harga kedelai impor stasioner pada 2^{nd} difference dikarenakan variabel tersebut nilai probabilitasnya kecil dari $\alpha = 0,10$ pada 2^{nd} difference.

b. Uji multikoleneritas

Uji multikolinearitas menunjukkan adanya hubungan linear yang sempurna atau pasti diantara beberapa atau semua variabel yang menjelaskan model regresi. Apabila sesama variabel bebas berhubungan
secara berarti, maka salah satu variabel bebas tersebut tidak dimasukkan (dieliminir) ke dalam model persamaan. Untuk lebih jelasnya hasil uji multikolinearitas hasil eviews dapat dilihat pada tabel diatas

Tabel 3. Hasil Uji Multikolinearitas

<table>
<thead>
<tr>
<th>Variabel</th>
<th>R^2</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q, Lh, Pl, B, P</td>
<td>0,984667</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>Lh, Pl, B, P</td>
<td>0,527408</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>Pl, Lh, B, P</td>
<td>0,959188</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>B, Lh, Pl, P</td>
<td>0,812116</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>P, Lh, Pl, B,</td>
<td>0,968781</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>C, Q, M, Y, Ct(-1)</td>
<td>0,822298</td>
<td></td>
</tr>
<tr>
<td>Q, M, Y, Ct(-1)</td>
<td>0,584190</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>M, Q, Y, Ct(-1)</td>
<td>0,917339</td>
<td>Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>Y, Q, M, Ct(-1)</td>
<td>0,921255</td>
<td>Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>Ct(-1), Y, Q, M</td>
<td>0,677904</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>M, Y, E, Pm</td>
<td>0,811907</td>
<td></td>
</tr>
<tr>
<td>Y, E, Pm</td>
<td>0,658031</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>E, Y, Pm</td>
<td>0,793870</td>
<td>Tidak Terdapat Multikolinearitas</td>
</tr>
<tr>
<td>Pm, Y, E</td>
<td>0,844809</td>
<td>Terdapat Multikolinearitas</td>
</tr>
</tbody>
</table>

Sumber: hasil olahan data sekunder dengan eviews, n=30

c. Uji normalitas

Uji normalitas sebaran data digunakan untuk melihat apakah data tersebar secara normal atau tidak. Distribusi data dikatakan tidak tersebar secara normal apabila nilai sig < $\alpha = 0,05$ untuk persamaan produksi dan konsumsi dan sig < $\alpha = 0,10$ untuk persamaan impor. Sedangkan data dikatakan tersebar secara normal apabila sig > $\alpha = 0,05$ untuk persamaan produksi dan konsumsi dan sig > $\alpha = 0,10$ untuk persamaan impor. Uji normalitas data dapat dilakukan dengan analisis data uji Jarque-Bera.

Tabel 4. Hasil Uji Normalitas

<table>
<thead>
<tr>
<th>Persamaan</th>
<th>Nilai Probabiliti</th>
<th>Tingkat α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produksi</td>
<td>0,78</td>
<td>0,05</td>
</tr>
<tr>
<td>Konsumsi</td>
<td>0,30</td>
<td>0,05</td>
</tr>
<tr>
<td>Impor</td>
<td>0,87</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Sumber: hasil olahan data sekunder dengan eviews, n=30
d. Uji autokorelasi

Uji autokorelasi digunakan untuk melihat korelasi antara sesama variabel bebas yang diurut berdasarkan waktu ke waktu, sehingga satu data dipengaruhi oleh data sebelumnya. Pengujian terhadap gejala autokorelasi dapat dilakukan dengan metode Breusch-Godfrey atau yang lebih umum dan dikenal dengan uji Langrange Multiplier (LM). Apabila nilai Chi-squares hitung (χ^2) lebih kecil dari nilai kritis Chi-squares (χ^2) maka dapat disimpulkan bahwa model terdapat autokorelasi negatif.

Tabel 5. Hasil uji autokorelasi

<table>
<thead>
<tr>
<th>Persamaan</th>
<th>Tingkat α</th>
<th>Dk</th>
<th>Nilai Chi-Squared (hitung)</th>
<th>Nilai Chi-Squared (tabel)</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produksi</td>
<td>0.05</td>
<td>4</td>
<td>2.07</td>
<td>9.488</td>
<td>Negatif</td>
</tr>
<tr>
<td>Konsumsi</td>
<td>0.05</td>
<td>4</td>
<td>0.14</td>
<td>9.488</td>
<td>Negatif</td>
</tr>
<tr>
<td>Impor</td>
<td>0.10</td>
<td>3</td>
<td>1.51</td>
<td>6.251</td>
<td>Negatif</td>
</tr>
</tbody>
</table>

Sumber: hasil olahan data sekunder dengan eviews, n=30

e. Uji heterokedastisitas

Untuk mengetahui ada tidaknya heterokedastisitas dalam penelitian ini, penulis menggunakan Uji Park dengan olahan program Eviews.

Tabel 6. Hasil uji heterokedastisitas

<table>
<thead>
<tr>
<th>Persamaan</th>
<th>Variabel</th>
<th>Nilai probabilitas</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produksi</td>
<td>Luas lahan</td>
<td>0.49</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Harga lokal</td>
<td>0.75</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Benih</td>
<td>0.78</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Pupuk</td>
<td>0.65</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td>Konsumsi</td>
<td>Produksi</td>
<td>0.22</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Impor</td>
<td>0.56</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Pendapatan perkapita</td>
<td>0.35</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Konsumsi sebelumnya</td>
<td>0.22</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td>Impor</td>
<td>Pendapatan perkapita</td>
<td>0.82</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Kurs rill</td>
<td>0.31</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
<tr>
<td></td>
<td>Harga impor</td>
<td>0.56</td>
<td>Tidak terdapat heterokedastisitas</td>
</tr>
</tbody>
</table>

Sumber: hasil olahan data sekunder dengan eviews, n=30
Dikatakan terdapat heterokedastisitas apabila terjadi pengaruh yang signifikan antara variabel bebas dengan variabel penganggu, dan sebaliknya apabila tidak terdapat pengaruh yang signifikan antara variabel bebas terhadap variabel penganggu, maka berarti tidak terdapat heterokedastisitas. Apabila nilai probabilita dari masing-masing persamaan tidak ada yang lebih kecil dari \(\alpha = 0.05 \) maka dapat disimpulkan bahwa tidak terdapat heterokedastisitas dalam persamaan.

2. Hasil Estimasi Persamaan
 a. Model Persamaan Produksi

 Dari estimasi yang dilakukan, didapat model persamaan produksi kedelai sebagai berikut:
 \[
 Q = - 252606.4 + 1.26 \text{ LH} + 1.86 \text{ PL} - 0.005 \text{ B} + 0.84 \text{ P}
 \]

 Berdasarkan hasil estimasi persamaan produksi, menunjukan bahwa perkembangan luas lahan kedelai mempengaruhi produksi secara positif. Arah pengaruh perkembangan luas lahan kedelai terhadap produksi kedelai adalah positif dengan koefisien estimasi 1.26. Artinya apabila perkembangan luas lahan kedelai meningkat sebesar 1 satuan, maka produksi kedelai akan meningkat sebesar 1.26 satuan dengan asumsi variabel lain dianggap konstan (ceteris paribus).

 Perkembangan harga kedelai lokal mempengaruhi produksi secara positif. Arah pengaruh perkembangan luas lahan kedelai terhadap produksi kedelai adalah positif dengan koefisien estimasi 1.86. Artinya apabila perkembangan harga kedelai lokal meningkat sebesar 1 satuan, maka produksi kedelai akan meningkat sebesar 1.86 satuan dengan asumsi variabel lain dianggap konstan (ceteris paribus).

 Perkembangan benih kedelai mempengaruhi produksi secara negatif. Arah pengaruh perkembangan benih kedelai terhadap produksi kedelai adalah negatif dengan koefisien estimasi -0.005. Artinya apabila perkembangan benih kedelai meningkat sebesar 1 satuan, maka
produksi kedelai akan turun sebesar 0.005 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

Tabel 7. Hasil uji persamaan produksi kedelai

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-252606.4</td>
<td>52515.07</td>
<td>-4.810169</td>
<td>0.0001</td>
</tr>
<tr>
<td>LH</td>
<td>1.266645</td>
<td>0.039185</td>
<td>32.40025</td>
<td>0.0000</td>
</tr>
<tr>
<td>PL</td>
<td>1.866395</td>
<td>17.95332</td>
<td>0.103958</td>
<td>0.9180</td>
</tr>
<tr>
<td>B</td>
<td>-0.005011</td>
<td>0.135546</td>
<td>-0.036568</td>
<td>0.9708</td>
</tr>
<tr>
<td>P</td>
<td>0.843099</td>
<td>0.161564</td>
<td>5.218366</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.984667
Adjusted R-squared 0.982214
S.E. of regression 50183.84
Akaike info criterion 24.63579
Schwarz criterion 24.86932
Hannan-Quinn criterion 24.71049
Durbin-Watson stat 1.543226

Sumber: hasil olahan data sekunder dengan program eviews

Perkembangan pupuk mempengaruhi produksi secara positif. Arah pengaruh perkembangan pupuk terhadap produksi kedelai adalah positif dengan koefisien estimasi 0.84. Artinya apabila perkembangan pupuk meningkat sebesar 1 satuan, maka produksi kedelai akan meningkat sebesar 0.84 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

b. Model persamaan konsumsi

Dari estimasi yang dilakukan, didapat model persamaan konsumsi kedelai sebagai berikut:

\[C = 171154.3 + 0.73Q + 0.85M - 0.06Y + 0.34 Ct-1 \]

Berdasarkan hasil estimasi persamaan konsumsi, menunjukkan bahwa perkembangan produksi kedelai mempengaruhi konsumsi secara positif. Arah pengaruh perkembangan produksi kedelai terhadap konsumsi kedelai adalah positif dengan koefisien estimasi 0.73. Artinya apabila perkembangan produksi kedelai meningkat sebesar 1 satuan,
maka konsumsi kedelai akan meningkat sebesar 0.73 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

Perkembangan impor kedelai mempengaruhi konsumsi kedelai secara positif. Arah pengaruh perkembangan impor kedelai terhadap konsumsi kedelai adalah positif dengan koefisien estimasi 0.85. Artinya apabila perkembangan impor kedelai meningkat sebesar 1 satuan, maka konsumsi kedelai akan meningkat sebesar 0.85 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

Tabel 8. Hasil Uji Persamaan Konsumsi Kedelai

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>17115.43</td>
<td>29744.45</td>
<td>0.575416</td>
<td>0.5704</td>
</tr>
<tr>
<td>GTOPI</td>
<td>0.726646</td>
<td>0.187281</td>
<td>4.343871</td>
<td>0.0002</td>
</tr>
<tr>
<td>MTOPI</td>
<td>0.851632</td>
<td>0.288791</td>
<td>2.948951</td>
<td>0.0076</td>
</tr>
<tr>
<td>Y</td>
<td>-0.064741</td>
<td>0.102876</td>
<td>-0.629317</td>
<td>0.5351</td>
</tr>
<tr>
<td>CT(-1)</td>
<td>0.349439</td>
<td>0.144442</td>
<td>2.419230</td>
<td>0.0235</td>
</tr>
</tbody>
</table>

R-squared | 0.822298 | Mean dependent var | 2077648 |
Adjusted R-squared	0.792681	S.D. dependent var	459433.9
S.E. of regression	209191.0	Akaike info criterion	27.49547
Sum squared resid	1.05e+12	Schwarz criterion	27.73121
Log likelihood	-393.6843	Haman-Quinn criter.	27.56930
F-statistic	27.76433	Durbin-Watson stat	2.072881
Prob(F-statistic)	0.00000000		

Sumber: hasil olahan data sekunder dengan eviews, n=30

Perkembangan pendapatan perkapita mempengaruhi konsumsi kedelai secara negatif. Arah pengaruh perkembangan pendapatan perkapita terhadap konsumsi kedelai adalah negatif dengan koefisien estimasi -0.06. Artinya apabila perkembangan pendapatan perkapita meningkat sebesar 1 satuan, maka konsumsi kedelai akan turun sebesar 0.06 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

Perkembangan konsumsi kedelai periode sebelumnya mempengaruhi konsumsi kedelai secara positif. Arah pengaruh perkembangan konsumsi kedelai periode sebelumnya terhadap konsumsi kedelai adalah positif dengan koefisien estimasi 0.35. Artinya
apabila perkembangan konsumsi kedelai priode sebelumnya meningkat sebesar 1 satuan, maka konsumsi kedelai akan meningkat sebesar 0.35 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

c. Model persamaan impor

Dari estimasi yang dilakukan, didapat model persamaan impor kedelai sebagai berikut:

\[M = -159746.4 + 0.11 Y + 0.34 E + 226.6 Pm \]

Berdasarkan hasil estimasi persamaan impor kedelai, menunjukan bahwa perkembangan pendapatan perkapita mempengaruhi impor kedelai secara positif. Arah pengaruh perkembangan pendapatan perkapita terhadap impor kedelai adalah positif dengan koefisien estimasi 0.11. Artinya apabila perkembangan pendapatan perkapita meningkat sebesar 1 satuan, maka impor kedelai akan meningkat sebesar 0.11 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

Perkembangan tingkat kurs rill mempengaruhi impor kedelai secara positif. Arah pengaruh perkembangan kurs rill terhadap impor kedelai adalah positif dengan koefisien estimasi 0.34. Artinya apabila perkembangan kurs rill meningkat sebesar 1 satuan, maka impor kedelai akan meningkat sebesar 0.34 satuan dengan asumsi variabel lain dianggap konstan (cateris paribus).

Tabel 9. Hasil Uji Persamaan Impor Kedelai

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-159746.4</td>
<td>287807.0</td>
<td>-0.555047</td>
<td>0.5836</td>
</tr>
<tr>
<td>Y</td>
<td>0.111764</td>
<td>0.055590</td>
<td>2.010524</td>
<td>0.0549</td>
</tr>
<tr>
<td>E</td>
<td>0.345187</td>
<td>12.71828</td>
<td>0.027141</td>
<td>0.9786</td>
</tr>
<tr>
<td>PM</td>
<td>226.6308</td>
<td>66.33880</td>
<td>3.416263</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

R-squared	0.811907	Mean dependent var	933186.9
Adjusted R-squared	0.790204	S.D. dependent var	530599.0
S.E. of regression	243033.1	Akaike info criterion	27.76335
Sum squared resid	1.54E+12	Schwarz criterion	27.95018
Log likelihood	-412.4502	Hannan-Quinn criter.	27.82312
Perkembangan harga kedelai impor mempengaruhi impor kedelai secara positif. Arah pengaruh perkembangan harga impor kedelai terhadap impor kedelai adalah positif dengan koefisien estimasi 226.6. Artinya apabila perkembangan harga kedelai impor meningkat sebesar 1 satuan, maka impor kedelai akan meningkat sebesar 226.6 satuan dengan asumsi variabel lain dianggap konstan (ceteris paribus).

d. Penguji Hipotesis

1) Hipotesis 1

Dari hasil estimasi pada persamaan produksi kedelai diperoleh nilai F_{hitung} sebesar 392.98 dengan tingkat keyakinan 95% = 0.05 , df1=4 dan df2 (n-k-1) atau (30-4-1=25), maka diperoleh nilai F_{tabel} adalah sebesar 2,420. Karena nilai F_{hitung} > F_{tabel} (392.98 > 2,420). Maka Ho ditolak dan Ha diterima sehingga hipotesis yang diajukan dalam penelitian ini diterima, bahwa secara bersama-sama terdapat pengaruh yang signifikan antara luas lahan kedelai (Lh), harga kedelai lokal (Pl), Benih (B) dan Pupuk (P) secara bersama-sama terhadap produksi kedelai (Q) di Indonesia dengan asumsi ceteris paribus.

Secara parsial nilai t_{hitung} dari tingkat luas lahan kedelai (Lh), diperoleh nilai t_{hitung} > t_{tabel} (32,40 > 1,706) maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini diterima, bahwa terdapat pengaruh yang signifikan dan positif antara luas lahan (Lh) terhadap Produksi kedelai (Q) di Indonesia.

Secara parsial nilai t_{hitung} dari harga kedelai local (Pl), diperoleh nilai t_{hitung} < t_{tabel} (0,10 < 1,706) maka Ho diterima dan Ha ditolak. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini ditolak, bahwa tidak terdapat pengaruh yang
signifikan dan positif antara harga kedelai lokal (P1) terhadap produksi kedelai (Q) di Indonesia.

Secara parsial nilai t_{hitung} dari benih kedelai (B), diperoleh nilai $t_{hitung} > t_{table}$ (-0,03 > -1,706) maka Ho diterima dan Ha ditolak. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini bisa ditolak kebenarannya, bahwa tidak terdapat pengaruh yang signifikan dan negatif antara benih kedelai (B) terhadap produksi kedelai (Q) di Indonesia.

Secara parsial nilai t_{hitung} dari pupuk (P), diperoleh nilai $t_{hitung} > t_{table}$ (5,21 > 1,706) maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini bisa diterima kebenarannya, bahwa terdapat pengaruh yang positif dan signifikan antara pupuk (P) terhadap produksi (Q) di Indonesia.

2) Hipotesis 2

Dari hasil estimasi pada persamaan konsumsi kedelai diperoleh nilai F_{hitung} sebesar 27.76 dengan tingkat keyakinan 95% = 0.05 , df1=4 dan df2 (n-k-1) atau (30-4-1=25), maka diperoleh nilai F_{table} adalah sebesar 2.24. Karena nilai $F_{hitung} > F_{table}$ (27.76 > 2.24) maka Ho ditolak dan Ha diterima sehingga hipotesis yang diajukan dalam penelitian ini diterima, bahwa secara bersama-sama terdapat pengaruh yang signifikan antara produksi kedelai (Q), impor kedelai (M), pendapatan perkapita (Y) dan konsumsi kedelai periode sebelumnya (Ct-1) terhadap konsumsi kedelai (C) di Indonesia dengan asumsi *cateris paribus*.

Secara parsial nilai t_{hitung} dari tingkat produksi kedelai, diperoleh nilai $t_{hitung} > t_{table}$ (4,34 > 1,316) maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini diterima, bahwa terdapat pengaruh yang signifikan
dan positif antara tingkat produksi kedelai (Q) terhadap konsumsi kedelai (C) di Indonesia.

Secara parsial nilai t_{hitung} dari impor kedelai, diperoleh nilai $t_{hitung} > t_{table}$ (2,94 > 1,316) maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini bisa diterima, bahwa terdapat pengaruh yang positif dan signifikan antara tingkat impor kedelai (M) terhadap konsumsi kedelai (C) di Indonesia.

Secara parsial nilai t_{hitung} dari pendapatan perkapita (Y), diperoleh nilai $-t_{hitung} < -t_{table}$ (-0,62 < - 1,316) maka Ho diterima dan Ha ditolak. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini ditolak, bahwa tidak terdapat pengaruh yang signifikan dan negatif antara pendapatan perkapita (Y) terhadap konsumsi kedelai (C) di Indonesia.

Secara parsial nilai t_{hitung} dari konsumsi kedelai periode sebelumnya (Ct-1), diperoleh nilai $t_{hitung} > t_{table}$ (2,41 > 1,316) maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini bisa diterima, bahwa terdapat pengaruh yang positif dan signifikan antara konsumsi kedelai periode sebelumnya (Ct-1) terhadap konsumsi kedelai (C) di Indonesia.

3) Hipotesis 3

Dari hasil estimasi pada persamaan impor kedelai diperoleh nilai F_{hitung} sebesar 36,34 dengan tingkat keyakinan 90% = 0,10, df1 = 3 dan df2 (n-k-1) atau (30-3-1=26), maka diperoleh nilai F_{table} sebesar 1,98. Karena nilai $F_{hitung} > F_{table}$ (36,34 > 1,98), maka Ho ditolak dan Ha diterima sehingga hipotesis yang diajukan dalam penelitian ini diterima, bahwa secara bersama-sama terdapat pengaruh yang signifikan antara pendapatan perkapita (Y), nilai kurs rill rupiah terhadap dollar AS (E) dan harga kedelai impor (M).
terhadap Impor kedelai (M) di Indonesia dengan asumsi *cateris paribus*.

Secara parsial nilai t_{hitung} dari tingkat pendapatan perkapita, diperoleh nilai $t_{hitung} > t_{label}$ $(2,01 > 1,314)$ maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini diterima, bahwa terdapat pengaruh yang signifikan dan positif antara tingkat pendapatan perkapita (Y) terhadap impor kedelai (M) di Indonesia.

Secara parsial nilai t_{hitung} dari nilai kurs riil rupiah terhadap dollar AS (E), diperoleh nilai $t_{hitung} < t_{label}$ $(0,656 < 1,314)$ maka Ho diterima dan Ha ditolak. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini ditolak, bahwa tidak terdapat pengaruh yang signifikan dan positif antara nilai kurs riil rupiah terhadap dollar AS (E) terhadap impor kedelai (M) di Indonesia.

Secara parsial nilai t_{hitung} dari harga kedelai impor (Pm), diperoleh nilai $t_{hitung} > t_{label}$ $(2,05 > 1,314)$ maka Ho ditolak dan Ha diterima. Sehingga hipotesis alternatif yang diajukan dalam penelitian ini diterima, bahwa terdapat pengaruh yang signifikan dan positif antara harga kedelai impor (Pm) terhadap impor kedelai (M) di Indonesia.

PEMBAHASAN

1. **Produksi kedelai**

Produksi kedelai di Indonesia dipengaruhi oleh beberapa variabel. Adapun variabel yang mempengaruhi produksi kedelai di Indonesia adalah luas lahan kedelai, harga kedelai lokal, benih kedelai, dan pupuk di Indonesia.

Pengaruh luas lahan kedelai terhadap produksi kedelai di Indonesia disebabkan karena luas lahan merupakan salah satu faktor input penting dalam usaha pertanian. Dengan adanya upaya perluasan lahan tanam maka akan terjadi peningkatan produksi pertanian. Peningkatan luas lahan yang diriungi dengan penerapan teknologi.
budidaya terhadap lahan tersebut dapat meningkatkan produktivitas petani. Sehingga semakin luas lahan yang digunakan petani, maka produksi kedelai yang dihasilkan petani juga akan meningkat.

Hal ini sesuai dengan teori yang dijelaskan dalam Soekartawi (2003), semakin luas lahan garapan makin besar pula hasil yang diperoleh petani hal ini menunjukkan peranan tanah dalam sector pertanian merupakan sektor utama yang menentukan tingkat pendapatan petani.

Harga kedelai juga memegang peranan penting dalam usaha peningkatan produksi petani. Namun pada kenyataanya peningkatan harga kedelai lokal yang terjadi. Tidak dapat meningkatkan produksi petani kedelai. Hal ini disebabkan harga kedelai lokal lebih mahal dibandingkan harga kedelai impor, sehingga kedelai lokal tidak mampu bersaing dengan kedelai impor, akibatnya produksi petani juga tidak mengalami peningkatan.

Produktivitas yang tinggi sangat ditentukan oleh daya hasil dari bibit unggul yang ditanam. Bila pengelolaan lingkungan tumbuh tidak dilakukan dengan baik, potensi daya hasil biji yang tinggi dari benih unggul tersebut tidak dapat tercapai. Pengaruh biaya penggunaan benih kedelai terhadap produksi kedelai adalah tidak signifikan dan negatif, apabila biaya penggunaan benih kedelai di Indonesia meningkat maka produksi kedelai akan turun. Namun ternyata penurunan produksi kedelai tidak dipengaruhi oleh kenaikan biaya penggunaan benih. Hal ini karena benih yang banyak beredar di pasar yang diproduksi oleh PT Pertani (pemerintah) memiliki kualitas yang kurang memuaskan. Penemuan varietas unggul baru yang mempunyai daya hasil tinggi dan sesuai dengan kebutuhan petani pun terkesan mengalami stagnasi. Kondisi ini disebabkan oleh semakin berkurangnya dana dan fasilitas untuk melakukan penelitian dan penemuan suatu varietas (Bambang, 2010). Dengan tidak memuaskannya kualitas benih yang diproduksi di dalam negeri, sehingga petani lebih memilih menggunakan benih yang
diimpor, meskipun dengan harga yang lebih mahal, namun hasilnya lebih banyak.

Faktor lainnya adalah penggunaan pupuk. Peningkatan harga pupuk ternyata tidak mengurangi produksi, namun justru meningkatkan produksi kedelai di Indonesia. Hal ini karena pemupukan merupakan salah satu faktor yang penting untuk dilakukan oleh petani dalam menghasilkan kedelai. Diantara masalah kesuburan tanah, ketersediaan unsur hara dalam tanah sering menjadi kendala dalam meningkatkan hasil pertanian. Sejalan dengan peningkatan produksi per satuan luas, tentu terjadi peningkatan pengangkutan unsur hara dari dalam tanah terutama pada waktu dilakukan panen. Dengan demikian pemupukan mutlak diperlukan guna menghindari pemiskinan unsur hara pada lahan tersebut (Rukmi, 2009).

2. Konsumsi kedelai

Konsumsi kedelai di Indonesia dipengaruhi oleh produksi kedelai, impor kedelai, pendapatan perkapita dan konsumsi kedelai periode sebelumnya.

Terdapatnya pengaruh yang signifikan dan positif antara impor kedelai terhadap konsumsi kedelai karena kebutuhan kedelai yang sangat tinggi di Indonesia yang sebagian besar untuk memenuhi permintaan industri makanan yang menggunakan kedelai sebagai bahan baku (tahu, tempe, kecap, dan sebagainya) sementara produksi kedelai lokal tidak dapat memenuhi kebutuhan tersebut, sehingga impor kedelai semakin meningkat. Sehingga semakin tinggi impor kedelai di Indonesia sebagai akibat semakin berkembangnya industri pengolahan makanan
berbahan baku kedelai maka konsumsi masyarakat terhadap kedelai juga akan semakin meningkat.

Tidak terdapatnya pengaruh yang signifikan dan negatif antara pendapatan perkapita terhadap konsumsi kedelai karena dari sisi permintaan, kedelai di Indonesia paling banyak digunakan untuk memenuhi kebutuhan industri yaitu sebagai bahan baku pembuatan tempe, tahu, kecap, dan sebagainya (Fakhrina, 2007). Artinya konsumen kedelai lebih banyak adalah pelaku industri, sehingga naik atau turunnya tingkat pendapatan perkapita (rata-rata tingkat pendapatan masyarakat di Indonesia) tidak berpengaruh terhadap konsumsi kedelai.

Menurut teori dalam Dornbush (2006:468), menyatakan bahwa konsumsi hampir dapat diprediksi dengan sempurna dari konsumsi periode sebelumnya ditambah penerimaan tambahan untuk pertumbuhannya. Dilihat dari konsumsi suatu periode dipengaruhi oleh konsumsi periode sebelumnya.

Terdapatnya pengaruh yang signifikan dan positif antara konsumsi kedelai perode sebelumnya terhadap konsumsi kedelai periode saat ini adalah karena seperti yang telah dijelaskan diatas, konsumsi pada saat ini hampir dapat diprediksi secara sempurna oleh konsumsi periode sebelumnya. Kedelai banyak digunakan dalam industri pengolahan makanan, pada saat produsen menghasilkan suatu jenis produk berbahan dasar kedelai, mereka akan memprediksi berapa yang harus dihasilkan, sehingga tidak terjadi kelebihan penawaran. Hal ini tentu saja dengan melihat berapa konsumsi masyarakat pada periode sebelumnya, dengan asumsi perekonomian dalam keadaan stabil, sehingga tidak terjadi kejutan pada tingkat pendapatan yang dapat mempengaruhi tingkat konsumsi pada periode berikutnya.

3. Impor Kedelai

Impor kedelai di Indonesia dipengaruhi oleh pendapatan perkapita, nilai kurs riil rupiah terhadap dollar AS dan harga kedelai impor. Menurut teori dalam Case dan Fair (2004: 382), menyatakan
 bahwa tingkat impor adalah fungsi dari pendapatan. Apabila pendapatan suatu negara meningkat maka masyarakat akan membeli segala sesuatuanya lebih banyak. Artinya apabila pendapatan meningkat maka impor cenderung meningkat. Terdapatnya pengaruh yang signifikan dan positif antara pendapatan perkapita terhadap impor kedelai di Indonesia adalah karena kedelai merupakan salah satu komoditas pertanian yang sangat dibutuhkan di Indonesia, baik sebagai bahan makanan, pakan ternak, maupun bahan baku industri. Sebagai bahan makanan, kedelai sangat berkhasiat bagi kesehatan tubuh karena mengandung gizi yang tinggi terutama protein.

Berdasarkan teori diatas, kurs riil memiliki hubungan yang positif dengan impor, sehingga semakin tinggi nilai kurs riil maka impor kedelai di Indonesia akan semakin banyak. Namun hasil dari pengolahan data dalam penelitian ini ditemukan bahwa nilai perubahan tingkat kurs riil tidak memiliki pengaruh yang signifikan terhadap impor kedelai. Hal ini terjadai karena produk makan olahan bervariasi baku kedelai yang di dominasi oleh tahu dan tempe di Indonesia merupakan salah satu bahan pangan yang dekat dengan kesehatan masyarakat, dimana pemenuhan protein yang terjangkau berasal dari komoditas ini. Namun pada saat
harga komoditas ini naik, akibat terjadinya perubahan nilai kurs tentunya hal ini akan mengurangi daya beli masyarakat (Dini, 2012).

Menurut teori dalam Case dan Fair (2004: 366), menyatakan bahwa suatu barang diimpor jika harga neto-nya bagi pembeli lebih rendah dari pada harga neto barang tersebut yang diproduksi didalam negeri. Maka konsumen akan membeli yang lebih murah dan mengkonsumsi lebih banyak. Apabila tidak ada perbedaan mutu komoditi tersebut antara produsen dalam dan luar negeri, dan tidak ada produsen dalam negeri yang yang mampu meletakkan harga yang rendah, maka konsumen akan beralih menggunakan komoditi dengan harga dunia tersebut. Terdapatnya pengaruh yang signifikan dan positif antara harga kedelai impor terhadap impor kedelai di Indonesia adalah karena dalam periode 30 tahun ini, harga kedelai impor cenderung lebih rendah dibanding dengan harga kedelai lokal.

4. Estimasi produksi, konsumsi dan impor kedelai di Indonesia

Estimasi terhadap produksi dan konsumsi kedelai penting dilakukan untuk tujuan melihat ke depan sampai seberapa jauh produksi kedelai dalam negeri mampu memenuhi kebutuhan konsumsi terhadap kedelai dalam negeri. Apakah jumlah produksi kedelai dalam negeri semakin mendekati jumlah kebutuhan konsumsi dalam negeri, ataupun sebaliknya hingga ketergantungan akan kedelai impor semakin besar.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produksi (ton)</th>
<th>Perke m Banga n (%)</th>
<th>Konsumsi (ton)</th>
<th>Perke m Banga n (%)</th>
<th>Impor (ton)</th>
<th>Perke m Banga n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>882.939</td>
<td>4,72</td>
<td>2.580.916</td>
<td>-15,57</td>
<td>1.697.977</td>
<td>-23,29</td>
</tr>
<tr>
<td>2014</td>
<td>904.385</td>
<td>2,43</td>
<td>2.705.935</td>
<td>4,84</td>
<td>1.801.551</td>
<td>6,10</td>
</tr>
<tr>
<td>2015</td>
<td>890.359</td>
<td>-1,55</td>
<td>2.787.947</td>
<td>3,03</td>
<td>1.897.588</td>
<td>5,33</td>
</tr>
<tr>
<td>2016</td>
<td>874.424</td>
<td>-1,79</td>
<td>2.815.162</td>
<td>0,98</td>
<td>1.940.738</td>
<td>2,27</td>
</tr>
<tr>
<td>2017</td>
<td>879.052</td>
<td>0,53</td>
<td>2.789.331</td>
<td>-0,92</td>
<td>1.910.279</td>
<td>-1,57</td>
</tr>
<tr>
<td>2018</td>
<td>886.232</td>
<td>0,82</td>
<td>2.735.858</td>
<td>-1,92</td>
<td>1.849.627</td>
<td>-3,18</td>
</tr>
<tr>
<td>2019</td>
<td>886.890</td>
<td>0,07</td>
<td>2.766.847</td>
<td>1,13</td>
<td>1.879.956</td>
<td>1,64</td>
</tr>
<tr>
<td>2020</td>
<td>883.391</td>
<td>-0,39</td>
<td>2.779.029</td>
<td>0,44</td>
<td>1.895.638</td>
<td>0,83</td>
</tr>
<tr>
<td>Tahun</td>
<td>Produksi (ton)</td>
<td>Pertambahan</td>
<td>Impor (ton)</td>
<td>Penurunan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>881,998</td>
<td>-0,16</td>
<td>2.777,245</td>
<td>-0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>883,513</td>
<td>0,17</td>
<td>2.769,662</td>
<td>-0,27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hasil estimasi sepuluh tahun ke depan secara nasional, produksi kedelai mengalami peningkatan sebesar 0,17 persen, akibat dari peningkatan produksi ini impor diperkirakan turun sebesar 0,48 persen, disamping itu konsumsi juga diperkirakan turun sebesar 0,27 persen. Namun meskipun hasil dari estimasi data produksi, konsumsi dan impor kedelai diatas dapat diambil kesimpulan bahwa 10 tahun yang akan datang jumlah produksi kedelai dalam negeri masih diperkirakan sangat rendah yaitu sekitar 800ribu ton, apabila kita hitung persentasenya produksi kedelai dalam negeri ini hanya 30-40 persen saja dari kebutuhan kedelai nasional. Pada tahun 2022 konsumsi kedelai sudah mencapai angka 2,7juta ton, akibatnya impor kedelai ke Indonesia akan terus meningkat. Tanpa ada upaya khusus dalam memacu produksi kedelai dalam negeri diperkirakan ketergantungan Indonesia akan kedelai impor akan tetap tinggi.

D. Penutup

Secara bersama, perkembangan luas lahan, harga kedelai lokal, benih dan pupuk berpengaruh signifikan terhadap produksi kedelai di Indonesia. Secara parsial, luas lahan kedelai berpengaruh signifikan dan positif terhadap produksi kedelai di Indonesia, harga kedelai lokal tidak berpengaruh...
signifikah dan positif terhadap produksi di Indonesia, biaya penggunaan
benih kedelai tidak berpengaruh signifikan dan negatif terhadap produksi
kedelai di Indonesia, dan biaya penggunaan pupuk berpengaruh signifikan
dan positif terhadap produksi kedelai di Indonesia.

Secara bersama, perkembangan produksi kedelai, impor kedelai,
pendapatan perkapita dan konsumsi kedelai periode sebelumnya berpengaruh
signifikan terhadap konsumsi kedelai di Indonesia. Secara parsial, produksi
kedelai berpengaruh signifikan dan positif terhadap konsumsi kedelai di
Indonesia, impor kedelai berpengaruh signifikan dan positif terhadap
konsumsi kedelai di Indonesia, pendapatan perkapita tidak berpengaruh
signifikan dan negatif terhadap konsumsi kedelai di Indonesia, dan konsumsi
kedelai periode sebelumnya berpengaruh signifikan dan positif terhadap
konsumsi kedelai di Indonesia.

Secara bersama, perkembangan pendapatan perkapita, tingkat kurs rill
dan harga kedelai impor berpengaruh signifikan terhadap impor kedelai di
Indonesia. Secara parsial, pendapatan perkapita berpengaruh signifikan dan
positif terhadap impor kedelai di Indonesia, tingkat kurs rill tidak
berpengaruh signifikan dan positif terhadap impor kedelai di Indonesia, dan
harga kedelai impor berpengaruh signifikan dan positif terhadap impor
kedelai di Indonesia.

DAFTAR PUSTAKA

PT Indeks, Edisi 5.

--

Companies.

Krugman, Paul R. And Maurice Obstfeld. *International Economics: Theory and

