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to data querying, i.e., given John is 30 years old and he has MS degree, how about his
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1. INTRODUCTION

In a system, we will find that every
component has relation one to each other.
For example, system CAREER has some
components such as education, age, and
salary in which we realize that all of them
has interrelationship as in general higher
education means higher salary, or older
someone will get higher salary, or in a
certain area, percentage of mid-40's of
persons who has doctoral degree is 30
percent, etc.

In this paper, we process a certain
relational database by classifying every
domain into several value of data or
elements of the component, i.e., domain or
component age can be classified into
{about_20, about_25, ..., about_60}. With
assumption that every classified data is a
fuzzy set, we must determine a member-
ship function which represents degree of
element belonging to the fuzzy set, i.e.,
about_30={0.2/26, 04/27, 0.6/28, 0.8/29,
1/30, 0.8/31, 0.6/32, 0.4/33, 0.2/34}. Next,
we apply the all membership function into
the previous relational database to find
every membership value for every item
data. And then, by using conditional
probabilistic theory, we construct a model

to describe interrelationship among all
components of the system. Relationship

between two components, X, and X, , of
a system is expressed in a matrix w,, . If
component X, has n elements, X, has m
elements then matrix w,, is n° m matrix,
where a;’T w,, expresses weight or
degree dependency of X, ] X, from
x, 1 X,, for 1£i £n, 1£ j£m. Through
this model, we generate some formulas to
predict any value of component related to
a given query of input data i.e., given
John is 30 years old and he has MS
degree, how many his probability to get
high salary, and off course we have to
define high salary as a fuzzy data value.
Given input of data querying can be
precise as well as imprecise data (fuzzy
data), so first, before the data can be used
to make prediction, we must to find their
probabilistic matching related to element
of components of system by using Point
Semantic Unification Process as intro-
duced in paper of Baldwin [1]. In this
case, Point Value Semantic Unification
can be considered as a conditional
probability between two fuzzy sets [3]. In
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calculating prediction, we generate two
different formulas to provide upper and
lower bound probability of prediction.
Hence, result of prediction works into a
interval truth value [a,b] where a£b as

proposed in [2].

2. BASIC CONCEPT
2.1 Conditional Probability

Definition 2.1 P(H | D) is defined as a
conditional probability for H given D.
Relation between conditional and uncon-
ditional probability satisfies the following
equation [5].

P(D)
where P(H C D) is an unconditional
probability of compound events 'H and D
happen’. P(D) is unconditional probability
of event D.

2.2 Mass Assignment

Definition 2.2 Given f is a fuzzy set
defined on the discrete space

X ={X,....X,} , namely

n c.
f=3 =

Suppose f is a normal fuzzy set whose
elements ae ordered such  that:
c,=1 c £c,, ifi£]; The mass assign-
ment corresponding to the fuzzy set f is [6]
mf ={{x,,X,,....x }:¢, - c.,} with x_,, =0 (2)

For example, given a fuzzy set
low_numbers = {1/1, 1/2, 0.5/3, 0.2/4}, the
mass assignment of the fuzzy set
low_numbersis

mlow_numbers = {1,2}05, {1,2,3}03,
{1,2,3,4}:0.2.

2.3 Point Semantic Unification

Definition 2.3 Let m; = {Li:li} and
my={Ni:n;} be mass assignment associate

with the fuzzy set f and g, respectively.
From the matrix,

jcard(L; (;Nj)f)

M {mlj} ! Card(Mj) %XII >q1]' ( )
The probability Pr(f | g) is given by [3]:
Pr(flg) =3 m,. @)

ij

For example, let f = {1/a,0.7/b,0.2/c}
and g = {0.2/a4,1/b,0.7/c,0.1/d} are
defined on X ={a,b,c,d,e }, so that

m: = {a}0.3, {a,b}:0.5, {a,b,c}:0.2,
my = {b}.0.3, {b,c}.0.5, {a,b,c}:0.1,
{a,b,c,d}:0.1.
From the following matrix,
0.3 0.5 0.1 0.1
{b} {b,c} | {ab,c} | {ab,c,d}
0.3 {a} 0 0 0.01 | 0.00075
0.5{ab} | 015 [ 0.125 | 0.0333 | 0.025
0.2 {1,b,c} | 0.06 0.1 0.02 0.015

the probability Pr(f | g)= 0.53905. It can

be proved that Point Semantic Unification

satisfies

Pr(f]lg) +Pr(f |g) =1. (5)
Thus, Point Semantic Unification is

considered as a conditional probability [3].

2.4 Interval Probability

Definition 2.4 An interval probability
IP(E) can be interpreted as a scope of
probability of event E, P(E), ie
IP(E)=[e1,e2] means e £ P(E) £e,, where
e: and e; are minimum and maximum
probability of E respectively[2].

For example, given two probabilities
P(A)=a and P(A)=b for event A and B,
where a,bl [0/].

Minimum probability of compound
event 'A and B happen’, P(ACB),,, is
the least intersection between A and B,
given by the following equation:

P(ACB).. =max(0,a+b- 1).
Maximum probability of compound
event 'A and B happen’, P(AC B),,, ., is

the most intersection between A and B,
given by;

min
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Thus interval probability of compound
event 'A and B happened' is defined as

IP(AC B) =[max(0,a+b- 1),min@b)]. (6)

Similarly, minimum and maximum
probability of compound event 'A or B
happens’, are max(a,b) and min(1,a+b)
respectively.

Thus, interval probability of com-
pound event 'A or B happened’ is defined
as:

IP(A E B) =[max(a, b),min(1,a +b)]. (7)

3. CONSTRUCTION MODEL OF SYS-
TEM

Definition 3.1 System is defined as
S(Er,X,Nm), where

Er: Number of entry data or number of
record or respondent of system.

X: Domain or components of system, if
there are n components then
X:(Xl,...,Xn).

Nm: Name of system.

For example, given CAREER DATABASE
in Table 1. By assuming that CAREER is
a system which has 24 entries and three
components, education, age, and salary,
therefore Er=24, X=(Xi:education, Xz:age,
Xs: salary), Nm=CAREER. Now, we try to
find relation among education, age, and
salary.

Table 1. CAREER DATABASE

Name Education | Age Sallary
Nm-1 MS 35 400,000
Nm-2 SHS 24 150,000
Nm-3 PhD 44 470,000
Nm-4 JHS 45 200,000
Nm-5 ES 35 125,000
Nm-6 SHS 37 250,000
Nm-7 MS 39 420,000
Nm-8 SHS 27 175,000
Nm-9 MS 45 415,000
Nm-10 SHS 56 275,000
Nm-11 N 60 100,000
Nm-12 JHS 33 300,000
Nm-13 BA 54 350,000
Nm-14 SHS a7 315,000
Nm-15 BA 41 355,000
Nm-16 SHS 21 150,000

Nm-17 BA 52 374,000
Nm-18 PhD 49 500,000
Nm-19 ES 58 125,000
Nm-20 JHS 59 200,000
Nm-21 BA 35 360,000
Nm-22 SHS 37 255,000
Nm-23 BA 31 340,000
Nm-24 SHS 29 250,000

First, we classify all three domains or
components as follows.

education = (low_edu,mid_edu,hi_edu),
age = (about_20,...,about_60),
salary = (low_slr,mid_slr,hi_slr).

where we assume that membership
functions of low _edu, mid_edu, and
high_edu:

m(low_edu) ={1/ N,0.8/ ES,05/ JHS},

m(mid_edu) ={0.2/ ES0.5/ JHS,0.9/ SHS,0.2/ BA},
m(hi_edu) ={0.1/SHS,0.8/ BA1/ MS1/ PhD}.

Membership function of age,

m(about_n) ={0.2/(n- 4),04/(n- 3),0.6/(n- 2),
0.8/(n- )1/n,08/(n+1),0.6/(n+2),04/(n+3),
0.2/(n+4)}.

Membership function of
mid_salary, and high_salary :

low_salary,

m(low_sIr) =[1/0,1/100000,0/150000],
m(mid_slr) =[0/100000,1/150000,1/ 250000,
(0/300000],
m(hi_slr) =[0/ 250000,1/ 300000].
By using all membership functions

above, we calculate and transform table 1
into table 2.

Table 2. CAREER FUZZY VALUE

Nama | Education Age Salar

LE [ ME [HE]| 20 | 25 60 | LS [MS |HS
Nm-1]0[ 0 [1]0]O 0| O 01
Nm-2| 0 [09(0.1]0.2]|08 0| O 1(o0
Nm-3| 0|0 [1]0]O 0| O 01
Nm-4|105(05( 0| 0| O 0| O 1(o0
Nm-5|08(02( 0| 0| O 0|05]|05|0
Nm-6| 0 [09(01] 0| O 0| O 1(0
Nm-7| 0|0 [212]0]| O 0| O 01
Nm-8| 0 [09(0.1] O |06 0| O 1(o0
Nm9| 0|0 ([1]0]O 0| O 011
Nm-10{ 0 [ 09 |01[ O | O .10.2( 0 |05]05
Nm-11] 1 | 0 |0 [ O] O 1|1 0|0
Nm-12] 0 [ 09 |01[ O | O 0| O 01
Nm-13| 0 | 02|08 0 | O 0| O 0|1
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Nm-14( 0 (0901 0 | O o O 0|1
Nm-15( 0 (0.2 08| 0 | O o O 011
Nm-16( 0 [ 0.9 |0.1|0.8]|0.2 o O 110
Nm-17( 0 [0.2]08| 0 | O o O 0|1
Nm-18| 0 [ O 110f[{0]..[/0]0O 0|1
Nm-19(08( 02| 0| 0] O [..]06] O [05(0.5
Nm-20( 0 (0901 0 | O .10.8| O 110
Nm-21( 0 [0.2]08| 0 | O o O 0|1
Nm-22( 0 (0901 0| O 0| 00901
Nm-23| 0 | 02|08 0| O 0]0 0|1
Nm-24[ 0 [09]0.1] 0 |0.2 0| O 110
S |[31f109|10| 1 |18 26(15(94 (13.1

Note: LE:low_edu, ME:mid_edu, HE =
hi_edu, 20:about 20, 25:about 25, ...,
LS=low_slr, MS:mid_slr and HS:hi_slr.

Definition 3.2 X, is defined as compound
attribute to express component of the
system . X, is a vector. If there are k
elements of X, then X =(Xny,...,Xnk), Where
Xni IS element i of compound attribute X,
and for further, X, is called attribute.

For example, if system CAREER has
three compound attributes and their
attributes as follows,

X1 : education = (low_edu,mid_edu,hi_edu),
X2 : age = (about_20,...,about_60),
X3 : salary = (low_slr,mid_slr,hi_slr).

then x11 =low_edu, x2s =about_40, etc.

Definition 3.3 ej“i is defined as member-

ship’s value of entry j for attribute Xni. If
compound attribute X, has k attributes
then,

||j é e;‘II :1 (8)

1Li£k

Example, as shown in Table 2,

g'=0.5 =09, etc.

Definition 3.4 N(X.) is defined as sum of
entries value for attribute x.. If there are
Er number of entries, then
N(x,;) = ée}“ )
1£i£Er

If compound attribute X, has k attributes
then,

Er = & N(x,;) (10)

1£iEk

For example, as shown in Table 2.,

N(xni)=N(low_edu) = 3.1.

Definition 3.5 P(xnm) is defined as
probability of attribute xn as follows.

P(x,) = o) 1)

If compound attribute X, has k attributes
then,

aP(x,)=1 (12)

1£ifk

3.1 Relation Among Compound Attri-
butes

Given three compound attributes, Xu,
X2 and Xs. Relation among them can be
illustrated in Fig. 1. as follows.

Figure 1. Relation Among Compound
Attributes, X3, X2 and Xa.

Definition 3.6 wnm is defined as weight
matrix, to express degree of dependency of
Xm from Xn. For a k-compound attribute
Xn and a j-compound attribute Xm, Wnm
and wmn present two different matrices, as
follows.

A~ NM nm nm
gan a; a; u
nm nm nm
_@h Gy v 3y
an - é l:l!
g - “ 7 - i
A~ M nm nm ,
g Ao ¢ !
A~ MN mn mn
a 1 a, ay 3
mn mn mn
A § a ,
I L
€ a “ 7 - U
e u
AN mn mn ,
g ap ¢ ag

Definition 3.7 Each element of matrix
Wnm, entry a" expresses numerical

probabilistic value of relation from x,T X,
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to x,,1 X,. a" can also be interpreted as
conditional probability as follows.

P(Xni meh) (13)
P(X,n)

If there are Er number of entries, then

ainhm = P(Xnilxmh) =

2 P i h
A, min(l,e™)
_ JEEr J J
a:]l:n - [ (14)

mh
a 1£jeEr ]

where P(x; Cx,,) express probability of
entries which be inside X and Xmn.

On the other hand, a]" expresses
numerical probabilistic value of relation
from x.,.1 X, to x;T X,. a" can also be
interpreted as conditional probability as
follows.

Ay = P, Ix,) = 2oa ) (15)

If there are Er number of entries, then
Q F ni omh
alEjEErmln (ej ’ej )

am™ = - — (16)
a1£j£Erej

hi

From equations (13), (14) and (15), (16),
we conclude that a" and a;" are in
general different.

The above definition leads to the
conclusion that every attribute can be
used to determine itself perfectly.

X ox Tx,  PuGXa) (17)
n ni n P(an)

If compound attribute X, has k attributes,
then,

€1 ay . ayu
é a
W@ 1o Ay
" gﬁ - 9 ‘H
A a; v+ 1¢
3.2 Relation Among Attributes In
System
Given three attributes, x,1 X,

%,1 X, and x,1 X,. Relation among

these three attributes can be seen in Fig.
2.

Figure 2. Relation Among Attributes, X1,
Xov, @and Xar.

In order to understand the meaning of
this connection, we use relation of set.

m P(%, CX;)
Py, €)= P(Eu()(;? ))(3r)
- P(Xlu g X3r)

P(,)
Both &> xP(x,) and a xP(x, ), point to

the same area or quantity, are inter-
section between xi, and Xszr. In the same
way, we can find two other relations,

gR0%) =8 Hx,) and  dHRx)=g Rx,).

which are proved as follows.

P(xzvcxg,)

Pl G g ) =2 )

P(%,)
=L la) e ) =al P, )

P(x )
» P(x, CX,)
VaV
(0%

P(xy C %) = P(XE)“()E ))(ZV)

_ P0G %)
P(%\)

(X, ) = a3 P(%,)

XP(%y, ) =, XP (X, ).

XP(%,) = ay P(Xp,)

xP(x,) = ag, xP(x,)

XP(X ) = i XP(%y, ).
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From the relations above, we find the
following equation.

12 23 21 413
auv'avr — avu'aur

32 31 (19)
aFV aI’U

Proof:
A P06, )= &R0,
aip (a7 EL)) = gty )y

r 32 3
v a

Tu

23
12, 8 _ 21,8
auv 32_avu a31'
\"

Tu

Important characteristic of relation
among attributes is transitive relation, i.e.

given a2 ,a%,a2’,a’ and we would like to
find interval value of a*°, which satisfy
the two following equations.

Lower bound of &%,
23

a
13 12 32
a,, * max{0,(a,, +a;, - 1)}.—-. (20)
a'I‘V
13
Upper bound of a;;,
a23
%t £minfal a ). 2 +
ary (21)
. a’ a% aZ
mln{(l'aillj). > ,(1- a\zlf)—23 I
Proof :
To find the upper bound of a’’, first we

take the maximum area inside X,,, result
of intersection between two intersection
areas which are intersection between X,

and X, , expressed in &> and intersection

between x, and X,,, expressed ina>>. The

maximum area that is result of
overlapping between the two intersection
areas, shown in Fig. 3., can be expressed

in min function applied to aZand a*.
The next, we plus with maximum
intersection between remain X, and X,,
which be outside of X,,. Again, this area
can be expressed in min function applied
to(1- a>) and (1- &°). Value of these
two area point to two different area, X,
and X, . However, in order to be able to be

compared, they must be point to the same
area, in this case we use X,, as base for
their comparison. Therefore, we must
convert them into X,, by multiplying with

2 32
a, 3
—r and —,
u T

we must convert all from Xx,, into X, by

respectively. Finally, again

multiplying with

32 412

= min@y, a,;) = ay

) b, aZ
mln{( 1- avu)>< ;\{ 3

vu

1- a?®) xﬁ}
vr 23

vr

32
a

- 23

= (1 - a; ) x%

Figure 3. Maximum Area of Intersection
between X, and X, inside X,,.

To find the lower bound of a;’, we

take the minimum area inside X,,, result

of intersection between two intersection
areas which are intersection between X,

and x,,, expressed in &2 and intersection

between x, and X, , expressed in a>.
The minimum area which is result of as
much as possible avoid overlapping
between the two intersection areas, shown
in Fig. 4., can be expressed in max
function applied to a}? and a* as shown
in (13). The next, we convert quantity of
the maximum area from X,, into X, by
32

a,
23"
r

multiplying with

mex(0, (& +&y- 1)
x| =@+ai-n

Xu "

Figure 4. Minimum Area of Intersection
between X, and X; inside X,,.
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4. CALCULATING PREDICTION

After constructed the model of
system, it can be used to predict interval
probability (find lower and upper bound)
of any query data. In this section, we
generate formulas to calculate interval
probability of the query data. First, user
must give input related to data type of
compound attributes.

Definition 4.1 Q is define as set of
input data that be given by user to do
guery for a certain data. If there are n
compound attributes then Q={qi,...,qn}

where q is data input related to
compound attribute Xi.
For example, suppose CAREER

system has been constructed, given John
is old man and has MS degree as input for
age and education, respectively, then q: =
old and g:=MS.

Definition 4.2 P(Xi,qi) is defined as
probabilistic matching of compound
attribute X; toward given input data q;. If
there are k elements or attributes of
compound attribute X;, then,

P(Xi,q)=( pi1,- .-, Pik), (22)
where
pii= P(xij | i), (23)

expresses conditional probability for Xi
given gi. In this case Point Semantic
Unification Process [1,3] can be used to
calculate pj.

For example, given g; =old which is a
fuzzy set defined as qi ={0/55,1/60}.

Xi = age has 9 attributes as defined in
section 2, as follows.

Xi ={about_20,about_25,...,about_60}.

By using point semantic unification
process applying to membership function
of age which has been defined in section 2
and membership function of q;, we
calculate P(Xi,qi) as follows. First, we
calculate the mass assignment for g;. It is
equivalent to the basic probability
assignment of Dempster Shafer Theory
which we can write as

m, ={5657,...60} :0.2{57,..60} : 0.2,
{58,59,60} : 0.2,{ 59,60} : 0.2,{ 60} : 0.2.

Next, i.e. mass assignment for Xis=55
as one attribute of Xj is given by

m, ={51..,59} :0.2,{52,..58} :0.2,
{53,...57 } : 0.2, {54,55,56} :0.2,{55} :0.2.

Process to calculate Point Value
Semantic Unification of relation between
two fuzzy set, old and about 55 or
P(about_55,0ld) is shown in the following
table.

0.2 0.2 0.2 02 | 02
{56....,60}|{57,...,60}|{58,59,60}| {59,60} | {60}

{51,...,59}] 0.032 0.03 0.026 0.02 0

{52,...58}| 0.024 002 | 0013 0 0
0.2

{53,...,57}| 0.016 0.01 0 0 0
0.2

(54,55,56)| 0.008 0 0 0 0
0.2

{55} 0 0 0 0 0

From the table, we calculate

P(about_55,0ld) =0.032 + 0.03 +0.026 + 0.02 +
0.024 +0.02 +0.013 + 0.016 +
0.01 + 0.008
=0.199.

In the same way, we find P(about_
60,0ld) = 0.799, where P(about_20,0ld) =
P(about_25,0ld) = ... = P(about_50,0ld) =
0, because there is no intersection
between their members. Finally, we find,

P(X; a,) =P(age old) = (0,0,0,0,0,0,0,0.199,0.799).

Definition 4.3 P(X, g;) is defined as
probability of attribute X influenced by
given input data q;. X; and q; have

different type of data, therefore to find
their probabilistic matching, first, we

must find P(X,q;) and then apply max-
multiply (*) operation between P(X,q;)
and w;; as follows. If X; has k attributes
and X, has s attributes then,
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P(xi,qj): P(Xj,qj)*wji (24)
al, al, ..al
al, al, ..al
:(pjl,..., pjs)* ... . (25
al al..aj
= (max{ pjl.al"‘l,...,pjs.as”1 veer  (26)
max{ p jl'aljli< ----- Pis akl})
= (P(Xilqu)i'“!P(Xiklqj))! (27)

where P(x, q;,) =max{ p,;a/,,..., Ps-as}.
Definition 4.4 P(x,,Q), which is

defined as probability of attribute X,

influenced by given set input data Q, is U
operation for all probabilities of relation

between X, and all members of Q. U
operation will be explained in the latter. If
there are n members of Q, {(q,....0,)},
then, )

P(x. Q= Y P(x.q)). (28)

Definition 4.5 P(X; Q) is defined as

probability of compound attribute X,

influenced by given set input data Q. If
there are n members of Q and k

attributes of X, , then
P(X;Q) = (P(X1, Q).+ P(%,Q)), (29)
F)(X,Q):(Ej£n P(Xl’qj )""’1£‘£n P(Xkaqj ). (30)

J

4.1 Calculating minimum probability
truth of P(x, Q)

Now, we generate formula for calcu-
lating minimum probability of attribute
X, given Q={q,....q,}, as input data.
Related to (27), we defined minimum
probability truth of P(x,,Q) as follows.

I:)min (Xir’Q): tuj P(Xr’qj)' (31)

1£ jEn

To simplify the problem, let's say that
system just has three compound attri-

butes, X,,X,, and X, and their relation

shown in Fig. 2. We calculate minimum
probability truth of x, 1 X, based on

input Q ={q,,q,,0} ..
P(Xsr ’Q)min = P(XSr ’ql) L,Jmin P(XSr’qz) L’Jmin P(X3r’ qs)

We separate formula above into two
parts. The first, we call direct predicted

probability of Xs, which is
P(X,,05) = P(%, |G5) = p;, and the second,
we call indirect predicted probability truth
of X, which is predicted from other
attributes value, P(x, o) U, P(%, d,) -
The next, we compare both of them by
applying max function as follows.

P0G Q)i =M P(x,, 0,) Uy P(X, 0,), Py )} (32)

The problem now, is how to calculate
P()%r,qi)umin P(XSqu) :dmin' Ie Xl haS S
attributes, X, has t attributes. Let's say
that,

P, &) = max{ p, a7, P85} = Py R
P(%;, ) = Max{ P87, P8y} = Py, 85

We solve this problem by imaging

interrelationship among x,,,X,,, andX;, as

shown in Fig. 2, in the following three
conditions.

L] (%, © %) ] (%, © %, ) |and
| (% G %) [EL (%, € %5,) |, then
(%, G X,,) Will beputinx,, .

12 23

3 @,y
(a, - ) X P,
" ay !

XZV alzg®
P —woexma( pu,, . or
X].LI a?all
gﬂm xrra(( plu' p2v)
r
-
\\‘ B aZa®
X3 (ay - P ) XP1y
r ru
12 23 21 13
a,a a,,a
= 23 r 13 r
dmin - (avr - uv32v )poV + (aur - vu31u )xplu +
rv ru
12 23
a a
uv32W xmax( plu7p2V)'
arV
or
12 23 21 13
a,,a a,, a
—_ 23 13
dmin - (avr - uavgg = )szv + (aur - vEulSlur ) ><plu +
rv ru
aZl a13

%xmax( PiusP2y)

ru
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2. 1| (X, C %) [E] (X, € %5, ) [and
| (% © %) [E (X, € %,) [, then
(X,, G X, ) will be putin
(%, C %) -

Xov

’ a\fr3 W( plu’ p2v)
> (@ - &),

Xar

_ 23 13 23
dmin =a,, max(plu’ p2v) + (aur - avr) >plu

3. 1| (%, € %) [E (%, € X,,) [and
| (%, C X5 ) IEl (%, € X, ) |, then
(%, C %,) will be putin

(% C X5,).
(ar - ay) xpa
sz >ailr3 Xnﬂ(( Pius p2v)
Xy, >
A3r
émin = (a\fr3 - a&ra ><va + a&rs Xrnax(plu’pZV)

From the above conditions, we gene-
rate a formula that satisfy all conditions

as follows.
12 .23
(23 . Ay _23 _13
dmin - (avr - mln( a32 18,8, )) o +

rv

12423
uv
13 H a avr 23 413 +
(aur - mln( a avr’aur))-plu

32
rv

12 5 23
mln(%’a\zlf’ati)'max(plwp2v)' (33)
rv

Finally, we find that
F)min (XSr ’Q) = rna({ drnin ’ P(Xsr |q3)} .

4.2 Calculating Maximum Probability
Truth of P(x,,Q)

Next, we generate formula for calcu-
lating maximum probability of attribute
Xir given Q=(gs.. 0On), as input data.

Related to (27), we defined maximum
probability truth of P(x,,Q) as follows.

U Px, .q,) (34)

Proc (%;,Q) = U
1£jEn

To simplify the problem, let's say that
system just has three compound
attributes, X;, Xz and Xs and their
relation shown in Fig. 2.2. We calculate

maximum probability truth of x, T X,
based on input Q=(q1,92,03).

Pmax(XSr 1Q) = P(Xsr ’ ql) l:Jmax P(X3r ’qz) l:Jmax P(X3r ’QB)

We separate formula above into two
parts. The first, we call direct predicted
probability of xs which is P(Xsr|gs) =
P(xsr]gs) = psr and the second, we call
indirect predicted probability truth of X
which is predicted from other attributes
value, pxx,,q)U._ P(x,.q,) - The next, we
compare both of them by applying min
function as follows.

P (Xar Q) = MIN{L (P(Xar 0y ) Uy P(Xar,02))+ )} (39)

The problem now, is how to calculate
P(X3,,d5 ) =8 max .d.e. X1 has s attributes,
X2 has t attributes. Let’s say that,

13
ur

I:)()(3r’ql) = max{pll Xa:if """ pls >(aslra} = plu xa
23

P(X,,0p) = max{p,; %27, Py X85} = Py, @07

We solve this problem by imaging
interrelationship among X, X2v and Xsr as
shown in Fig. 2.2, in the following four
conditions.

L If (a7 +ay £l)and (a7 +aj £1)
and (a, +a;’ £1) then

23

avr ><va
alljf ><plu

r

CLnax = a\frspoV + ai? xplu'

a23

2, 1 2 412 —
2' If (a'rv +auv >1) a'nd ((arv +aUV B 1) \:;; >
rv
a13 a2‘°’
31, 2 2 +a?
(ary a2 and (@ +ay, -1). 75 >

ru rv

(ay +aff -1)), then
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23 32, 12 a;
P (&5 - (an +an l)XE)m

X %5

=

P (@ +ay- J)Xg;m«pm.pm)

—P»(q- (g7 +ay- D

20,

) %Py,

23
a
o =(@% - (a5 +a - D22)p,, +
rv

23
a
(ay - (@n +ay - 1))y, +
rv
a23
x \3{; maX( plu ' p2v)

rv

(a% +ay, - 1)

a13
3. 1f (a3 +a% >1) and ((a% +aZ - 1).—ur >
ru

32 12 \2,3 31 21 aif
(a, ta, -1 ) and ((a,, +a., -1).— >
rv uv s T 32 ru vu T 31

rv ru

(a +aZ%-1)), then

aﬁ&‘
P (- @ +al- ) xafT;) By
\Y Xlu !

Xar

31 1 3111'3
P& +e- 1) ?Mmpm)

13
— (7 @ +a?- 1)%)%

a13
dmax = (atfi - (afi + aiil h 1) X%) ><plu +

ru

13
a
(a7 - (an +ak - 1) ) xp,, +
ru
13

a
(af, +ay, - 1)x=xmax(p,,.p,,)

ru

13
a
A1t (a +al >1) and (& +al - D22 >

ru

a13
(ay +af, -1).—5) and ((a +aj;}-1)>
ru

23
V|
32 12 a,,
(a,, +a, -1). =), then
rv

Xy Xoy

P (- (& +ay - D)p,,
Xsr >(aif+a$?— 1)>maxp,,, P,

—P (@ @+ D),

doax = (a3 - (a3 +ay - 1)), +
(ay - (ay +ay - 1) xp,, +
(@l +ay - 1)>max(p,,p,,)-
From the above conditions, we generate a

formula that satisfy all condition as
follows.

23
—(a23 32 12 a 31 21
Onax = (a4, - max(0,(a,y +ay - 1) x—%,(ay, +ay, - 1)x
v
13
a 23 13 13 32 12
;J;'- '(avr +ay - 1))) Py +(aur - max( Oy(arv tay - l)x
ru
a2 " ald

31 23 13
;; !(aru +avu - 1) g; !(avr + aur - 1))) xplu +

rv ru

23
a
max( 0,(a® + al2 - l)xa%,(afj +aZl - 1)x
v
13
23 13
g; r(avr tag - 1)) ><max( Pius p2v)' (36)
ru

a

Finally, we find that
I:)malx (X3r ’Q) = rna)({ ldmax + P(XSr |q3)}

5. CONCLUSION

This paper proposed a method based
on conditional probability relation to
approximately calculate interval proba-
bility of dependency of data for data
guerying. Theoretically the formulation is
quite interesting. However, it seems to be
too complicated to calculate interaction of
three or more components. Practically the
formulas should be simplified, even
though the accuracy of prediction may be
decreased.
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