EVALUASI PRODUKSI ALAT ANGKUT JENIS HINO DUTRO FM 260 TI DAN HINO DUTRO FM 320 TI PADA PENGANGKUTAN BATUBARA DARI FRONT AREA PIT AIR TALANG SEGINIM KE STOCKPILE RUN OF MINE (ROM) AIR TALANG SEGINIM PT. DANAU MAS HITAM, BENGKULU

EVALUATION PRODUCTION OF TOOLS CONVEYANCES HINO DUTRO FM 260 TI AND HINO DUTRO FM 320 TI ON THE TRANSPORT OF COAL FROM FRONT PIT AIR TALANG SEGINIM AREA TO STOCKPILE RUN OF MINE (ROM) AIR TALANG SEGINIM PT. DANAU MAS HITAM, BENGKULU

Reko Julianto¹, Syamsul Komar², Fuad Rusydi Swardi³

¹,²,³ Jurusan Teknik Pertambangan, Fakultas Teknik, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih, Indralaya Utara, 30662, Sumatera Selatan
PT. Danau Mas Hitam, Jl Ir Rustandi Soegianto Pulau Bai Bengkulu, 38216 Bengkulu
Email: reko_juli4nto@yahoo.co.id

ABSTRAK

PT Danau Mas belum dapat mencapai terget produksi yang telah direncanakan, hal itu disebabkan oleh beberapa faktor diantaranya kurangnya efektivitas dan efisiensi kerja alat angkut, efektifitas waktu kerja, kondisi jalan angkut, dan keahlian operator. Untuk meningkatkan produksi batubara dilakukan dengan analisis aktual lapangan terhadap cycle time, Waktu Kerja Alat Angkut, Mechanical Availability, Physical Availability, Use Availability, Effective Utilization, kondisi jalan angkut, yang diperoleh dari data yang ada dilapangan, yang akan berpengaruh terhadap waktu efesiensi kerja, salah satu perbaikan yang dilakukan adalah peningkatan waktu kerja efektif dengan cara estimasi waktu kerja yaitu menghilangkan waktu hambatan yang direncanakan, efisiensi kerja aktual PT Danau Mas Hitam diperoleh sebesar 51,45 % kemudian dilakukan estimasi perbaikan diperoleh waktu efisiensi kerja sebesar 67,67 %, yang terdiri dari waktu hambatan sebesar 2145,66 jam/tahun dan waktu kerja efektif sebesar 4554,34 jam/tahun. Proses perbaikan yang dilakukan terhadap waktu efisiensi meninjatkan produksi alat angkut sebesar 10.416,6 ton/tahun jenis hino dutro 500 FM 260 Ti dan sebesar 3.595,1 ton/ tahun jenis hino dutro 500 FM 320 Ti. Upaya-upaya lain yang juga dapat dilakukan dalam peningkatan produksi batubara adalah perbaikan dan perawatan jalan angkut, penambahan jumlah alat angkut dan peningkatan ketrampilan operator.

Kata kunci : cycle time, efesiensi kerja, grade.

ABSTRACT

PT Danau Mas Hitam has not been able to reach planned production, it is caused by several factors, including lack of effectiveness and efficiency of transportation, the effectiveness of working time, haul road conditions, and expertise operator. To increase coal production is done with the actual analysis of the field cycle time, the Working Time Transport Equipment, Mechanical Availability, Physical Availability, Use Efficiency, haul road conditions, derived from the existing document in the field, which will affect the time efficiency work, one of the improvements made is to increase the efficiency of work time in a way that eliminates working time estimates barriers disare time, the efficiency of the actual working PT Danau Mas Hitam was obtained for 51.45 % and then do repair estimate obtained efisiensi time employment at 67.67 %, which consists of a time barrier of 2145.66 hours/year and the effective working time of 4554.34 hours/year. Process improvements are made to improve the results of time efficiency production conveyance of 10.416.6 tons/year type Hino Dutro 500 FM 260 Ti and amounted to 3.595.1 tons/year type Hino Dutro 500 FM 320 Ti. Other measures that can also be done in increasing coal production is improved and haul road maintenance, increasing the number of carriers and operators skill enhancement.

Keywords: cycle time, efficiency of work, grade.
1. PENDAHULUAN

Batubara semakin banyak dibutuhkan dinegara-negara industri maju seperti Jepan, Amerika, Jerman, Prancis, dan negara-negara industri baru seperti Korea Selatan, Taiwan, China, dan negara ASEAN lainnya. Batubara merupakan salah satu sumber energi yang penting saat ini karena dengan semakin menipisnya cadangan minyak bumi.

Permintaan pasar akan batubara yang semakin lama semakin tinggi, mengakibatkan semakin banyak berdirinya perusahaan-perusahaan pertambangan batubara di Indonesia. Salah satu perusahaan yang sedang mengadakan kegiatan penambangan batubara di Bengkulu adalah PT. Danau Mas Hitam (DMH) Bengkulu. Metoda penambangan yang dipakai adalah metode tambang terbuka dengan sistem counter yaitu suatu metode penambangan yang umumnya diterapkan pada areal yang berbukit [1], luas areal ± 800,321 ha, dengan target produksi atau coal getting sebesar 480.000 MT khusus untuk bulan September 2013 direncanakan target produksi sebesar 40.000 MT dengan pengupasan over burden sebesar 480.000 BCM [2].

Masalah yang dihadapi pada saat ini adalah produksi batubara dari penambangan belum dapat memenuhi sasarannya produksi yang ditetapkan. Pada tahun 2013, sasaran produksi batubara di Pit Air Talang seginim (ATS) adalah sebesar ±12.000 – 15.000 ton, tetapi sasaran produksi blum tercapai dan salah satu faktornya adalah kondisi jalan, untuk itu dilakukan pengkajian kondisi jalan produksi, hal ini dilakukan untuk memperoleh kerja alat angkut yang maksimal dalam upaya mencapai sasarannya produksi yang telah ditetapkan.

Dalam pencapaian target produksi banyak faktor yang mempengaruhiya seperti kemampuan alat, keahlian operator, kondisi jalan produksi [4], kemudian dilakukan penelitian dimana penelitian ini membatasi pada pengaruh waktu kerja alat angkut untuk mencapai target produksi, yang bertujuan meningkatkan kerja alat angkut terhadap pencapaian target produksi alat angkut dilokasi penambangan PT. Danau Mas Hitam, dan mengkaji kondisi jalan produksi terhadap pencapaian target produksi alat angkut dilokasi penambangan PT.Danau Mas Hitam.

Untuk mengetahui hasil produksi suatu alat angkut cara menghitung kemampuan produksi alat angkut tersebut dengan menggunakan rumus sebagai berikut:

\[
P_A = \frac{60 \times n_b \times KB \times FK \times \rho \times Eff}{CT_A}
\]

\[KB = K \times F_b\]

\[FK = SF \times EU\]

Keterangan :

- \(P_A \) = Kemampuan produksi alat angkut (ton/jam).
- \(n_b \) = Jumlah pengisian bucket alat gali-muat terhadap alat angkut.
- \(KB \) = Kapasitas nyata bucket (m³).
- \(K \) = Kapasitas teoritis bucket (m³).
- \(F_b \) = Faktor koreksi bucket (%).
- \(FK \) = Faktor koreksi (%).
- \(SF \) = Swell Factor (%).
- \(EU \) = Faktor efektif penggunaan alat angkut (%).
- \(\rho \) = Densitas material (ton/m³).
- \(Eff \) = Efisiensi kerja (%).
- \(CT_A \) = Waktu edar alat angkut (menit).

Dimana untuk mengetahui hasil produksi harus mengetahui terlebih dahulu faktor-faktor yang mempengaruhi hasil produksi tersebut diantaranya : Sifat Material merupakan Semakin keras jenis material yang dikerjaran, dan semakin banyak kandungan air material maka produksi alat gali-muat dan alat angkut akan semakin menurun[5], Swell Factor merupakan (faktor pengembangan) material merupakan perbandingan antara material dalam keadaan insitu (belum digali = BCM) dengan material dalam keadaan loose (setelah digali = LCM) [5], cycle time adalah waktu yang dibutuhkan peralatan produksi tertentu untuk melakukan suatu pekerjaan dalam suatu periode tertentu[5], Waktu kerja efektif adalah waktu kerja yang benar-benar dapat dipergunakan oleh operator dan alatnya untuk berproduksi [5], Kesediaan Kerja Alat Angkut yang digunakan untuk menilai kondisi dari suatu alat meliputi : Kesediaan Mekanik (Mechanical Availability), Kesediaan Fisik (Physical Availability), Kesediaan Penggunaan (Use Availability), Penggunaan Efektif (Effective Utilization)[5], dimana pola yang digunakan pada saat produksi ada beberapa macam
yaitu untuk penggalian top loading dan bottom loading dan untuk pola pengangkutan singel side loading, dan double side loading [6], dimana kondisi jalan angkut juga mempengaruhi hasil produksi alat angkut yaitu jalan angkut yang dilalui oleh alat angkut dapat mempengaruhi produksi pengangkutan [7], hal ini disebabkan oleh adanya rolling resistance dan grade resistance [7]. Sehingga untuk tau hasil produksi juga harus mengetahui lebar jalan lurus minimum, lebar jalan berbelok minimum, yang berpengaruh pada cycle time alat angkut, yang dihitung dengan menggunakan statistika dasar distribusi normal [8] Alat angkut yang digunakan adalah jenis dumptruck dan alat gali muat jeni back hoe [9], cycle time dipengaruhi oleh jalan angkut[10].

2. METODE PENELITIAN

Masalah-masalah yang dibahas dalam skripsi ini diselesaikan dengan metode :

1. Studi litelatur
 Studi literatur dilakukan pada sebelum, saat dan sesudah penelitian dilakukan. Literatur yang digunakan berasal dari buku, jurnal penelitian dan laporan-laporan yang berhubungan dengan penelitian ini.

2. Pengumpulan Data
 Data-data yang dikumpulkan penulis berupa :
 a. Data Primer
 Data yang langsung diperoleh dari pengamatan di lapangan, seperti data geometri jalan angkut, jumlah dan spesifikasi alat gali-muatan dan alat angkut, jumlah pengisian bucket alat gali-muatan terhadap alat angkut, waktu kerja alat dan waktu edar alat.
 b. Data Sekunder
 Data yang diperoleh dari arsip, meliputi peta lokasi, keadaan topografi daerah penelitian, data produksi batubara, data curah hujan dan lain sebagainya.

3. Pengolahan Data
 Data-data yang diperoleh dikelompokkan, diolah dan dianalisa menggunakan rumus matematis, kemudian disajikan dalam bentuk tabel, gambar dan perhitungan penyelesaian.

4. Analisa Data
 Data-data yang telah diperoleh kemudian dianalisis berdasarkan literatur-literatur yang berhubungan dengan masalah tersebut, ialah sebagai berikut :
 a. Menghitung cycle time alat angkut dengan menggunakan metode statistika dasar distribusi normal.
 b. Menghitung n waktu kerja alat dengan menggunakan metode perbandingan waktu aktual lapangan dengan estimasi waktu kerja.
 c. Menghitung waktu kerja kesesuaian mekanik alat angkut hino dutro fn 260 ti dan hino dutro fn 320 ti dengan menggunakan metode statistika dasar ditribusi normal dan menggunakan rumus kesesuaian mekanik.
 d. Menghitung grade jalan angkut produksi dengan menggunakan rumus pemindahan tanah mekanis dengan rumus grade jalan.
 e. Menghitung keserasian antara jumlah alat angkut dengan alat gali muat dengan melihat jumlah alat angkut dan alat gali muat di lapangan dengan perbandingan teoritisnya.

3. HASIL DAN PEMBAHASAN

3.1. Analisa Kerja dan jumlah Alat Angkut

PT. Danau Mas Hitam menggunakan 4 alat angkut dump truck dimana 4 alat angkut dump truck itu dibagi lagi menjadi 2 fungsi yaitu 2 lat angkut dump truck berwarna putih jenis hino 500 dutro difungsikan juga untuk membantu pengangkutan over burden pada saat pembukaan tanah penutup (over burden), dan 2 alat angkut dump truck berwarna hijau difokuskan untuk pengangkutan produksi batubara.

3.2. Faktor Koreksi Bucket

Volume nyata bucket pada pemukan batubara oleh alat angkut tidak selalu sama dengan volume teoritisnya. Untuk itu perlu dilakukan koreksi terhadap volume bucket tersebut. Dari data diperoleh bahwa factor koreksi bucket adalah 93,61
% Sedangkan rata-rata jumlah bucket pemuatan alat gali-muat terhadap alat angkut \(n_b \) untuk
\(
\text{hino dutro 500 fm 260 Ti}
\)
adalah 9 bucket dan untuk
\(
\text{hino dutro 500 fm 320 Ti}
\)
adalah 11 bucket.

3.3. Cycle Time Alat Angkut

Pengamatan waktu edar ini dilakukan sebanyak 30 kali terhadap masing-masing alat. Untuk alat angkut, jarak tempuh dari front area penambangan Pit Air Talang Seginim (ATS) ke stockpile Run of Mining (ROM) adalah \(\pm 1.502,277 \) m. Dari hasil pengamatan di lapangan diperoleh waktu edar alat angkut dumptruck Hino 500 Dutro FM 260 Ti adalah 14,19 menit, waktu kembali kosong 4,9 menit dan waktu edar dumptruck Hino 500 Dutro FM 320 Ti adalah 13,39 Menit, waktu kembali kosong 4,87.

3.4. Kondisi Jalan Angkut

PT Danau Mas Hitam tepatnya di area pit Air Talang Seginim, pada pit Air Talang Seginim dibuat dalam beberapa segmen jalan angkut sebagai berikut:

Segmen 1 : A - B
Segmen 2 : B - C
Segmen 3 : C - D
Segmen 4 : D - E
Segmen 5 : E - F
Segmen 6 : F - G
Segmen 7 : G - H
Segmen 8 : H - I
Segmen 9 : I - J
Segmen 10 : J - K
Segmen 11 : K - L
Segmen 12 : L – M

Gambar 1. Profil Jalan Angkut Pit Iair Talang Seginim Pt. Danau Mas Hitam

Tabel 1. Kondisi Jalan Angkut Produksi Dari Front Area Penambangan Ke Stock File Di Pit Air TalangSeginim

<table>
<thead>
<tr>
<th></th>
<th>Grade (%)</th>
<th>Kondisi jalan</th>
<th>Lebar jalan (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>0,28</td>
<td>Lurus miring</td>
<td>4</td>
</tr>
<tr>
<td>B - C</td>
<td>2,56</td>
<td>Berbelok miring</td>
<td>9,2</td>
</tr>
<tr>
<td>C – D</td>
<td>14,28</td>
<td>Lurus miring</td>
<td>4,4</td>
</tr>
<tr>
<td>D – E</td>
<td>14,40</td>
<td>Berbelok miring</td>
<td>9,3</td>
</tr>
<tr>
<td>E – F</td>
<td>29,41</td>
<td>Lurus miring</td>
<td>5,2</td>
</tr>
<tr>
<td>F – G</td>
<td>3,47</td>
<td>Lurus miring</td>
<td>3,8</td>
</tr>
<tr>
<td>G – H</td>
<td>8,91</td>
<td>Lurus miring</td>
<td>3,6</td>
</tr>
<tr>
<td>H – I</td>
<td>8,12</td>
<td>Lurus miring</td>
<td>4,8</td>
</tr>
<tr>
<td>I – J</td>
<td>17,62</td>
<td>Berbelok miring</td>
<td>9,2</td>
</tr>
<tr>
<td>J – K</td>
<td>11,62</td>
<td>Lurus miring</td>
<td>4,2</td>
</tr>
<tr>
<td>K – L</td>
<td>5,63</td>
<td>Lurus miring</td>
<td>3,8</td>
</tr>
<tr>
<td>L – M</td>
<td>6,36</td>
<td>Berbelok miring</td>
<td>8,4</td>
</tr>
<tr>
<td>M – N</td>
<td>15,06</td>
<td>Berbelok miring</td>
<td>8,8</td>
</tr>
</tbody>
</table>
3.2. Waktu Kerja Efektif Alat Angkut

Tabel 2. Waktu Kerja Efektif dan Efisiensi Kerja

<table>
<thead>
<tr>
<th>NO</th>
<th>KETERANGAN</th>
<th>JUMLAH JAM (jam/tahun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waktu Kerja yang Tersedia</td>
<td>6700</td>
</tr>
<tr>
<td>2</td>
<td>Waktu Hambatan</td>
<td>2726,3</td>
</tr>
<tr>
<td></td>
<td>• Waktu Hambatan yang Direncanakan</td>
<td>526,5</td>
</tr>
<tr>
<td></td>
<td>• Waktu Hambatan yang Tidak Direncanakan</td>
<td>2119,8</td>
</tr>
<tr>
<td></td>
<td>• Waktu Hambatan yang Dapat Dihindari</td>
<td>524,8</td>
</tr>
<tr>
<td></td>
<td>• Waktu Hambatan yang Tidak Dapat Dihindari</td>
<td>1675</td>
</tr>
<tr>
<td>3</td>
<td>Waktu Kerja Efektif</td>
<td>3447,5</td>
</tr>
<tr>
<td>4</td>
<td>Efisiensi Kerja</td>
<td>51,45 %</td>
</tr>
</tbody>
</table>

Waktu kerja efektif (We) pada PT. Danau Mas Hitam (DMH) Bengkulu adalah 3447,5 jam/tahun. Dengan perincian waktu kerja yang tersedia (Wt) adalah 6700 jam/tahun dan Waktu Hambatan (Wh) adalah 2726,3 jam/tahun.

Dari waktu kerja efektif (We) tersebut dapat diketahui bahwa efisiensi kerja pada PT. Danau Mas Hitam (DMH) Bengkulu adalah 51,42 %.

3.6. Kesediaan Kerja Alat Gali-Muatan dan Alat Angkut

Kesediaan kerja digunakan untuk menilai kondisi dari suatu alat, dimana yang diteliti pada lapangan adalah kondisi alat angku jenis Hino Duro FM 260 Ti Dan Hino Dutro FM 320 Ti, dengan memperhitungkan kesediaan mekanik (Mechanic Availability) (MA), kesediaan fisik (Physical Availability) (PA), kesediaan penggunaan (Use Availability) (UA) dan penggunaan efektif (Effective Utilization) (EU). Hasil pengamatan dari data bulan Agustus sampai Oktober 2013 kesedian kerja alat angkut, berikut beberapa tabel yang menunjukkan kesedian kerja alat angkut jenis Hino Duro FM 260 Ti Dan Hino Dutro FM 320 Ti yang ada pada tambang batubara PT Danau Mas Hitam (DMH) provinsi Bengkulu:

Tabel 3. Kesediaan Mekanik Rata-Rata Alat Angkut

<table>
<thead>
<tr>
<th>NO</th>
<th>UNIT</th>
<th>UNIT NO</th>
<th>RATA-RATA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUMPTRUCK HINO DUTRO FM 260 Ti</td>
<td>MK – 01</td>
<td>MA 100,00</td>
</tr>
<tr>
<td></td>
<td>DUMPTRUCK HINO DUTRO FM 320 Ti</td>
<td>MK – 02</td>
<td>PA 100,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UA 58,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EU 58,08</td>
</tr>
</tbody>
</table>

3.7. Kemampuan Produksi Alat Angkut

Setelah diketahui faktor-faktor yang mempengaruhi, maka diperoleh kemampuan produksi alat angkut pada hasil pengamatan di lapangan, besarnya kemampuan produksi dari alat angkut dump truck hino 500 dutro FM 260 Ti adalah 7,86 ton/jam dan dump truck hino 500 dutro FM 320 Ti adalah : 11,37 ton/jam semua itu dipengaruhi oleh banyak faktor diantaranya yaitu efektif penggunaan alat angkut, efisiensi kerja, keahlian opearor dan kondisi lapangan, kondisi jalan angkut produksi dan lain-lain.

3.8. Kesesuaian Kerja Alat Gali-Muatan dan Alat Angkut

1. Jumlah Alat Angkut

Jumlah alat angkut yang digunakan pada PT. Danau Mas Hitam (DMH) Bengkulu adalah 4 unit, yang dibagi atas 2 unit dump truck hino 500 dutro FM 260 Ti dan 2 unit dump truck hino 500 dutro FM 320 Ti.

2. Kesesuaian Kerja Alat Gali-Muatan dan Alat Angkut (MF)

Dengan jumlah alat gali-muatan 2 unit dan alat angkut 4 unit yang tersedia sekarang di PT. Danau Mas Hitam (DMH) Bengkulu, kesesuaian keja alat gali muat dan alat angkut masih belum tercapai. Besarnya kesesuaian kerja alat gali muat dan alat angkut adalah 0,89 akibatnya di lapangan ditemukan waktu tunggu alat gali-muatan. Secara terpisah, besarnya kesesuaian kerja alat gali-muatan terhadap alat angkut dump truck hino 500 dutro FM 260 Ti.
adalah 0,39 dan besarnya keserasian kerja alat gali-muat terhadap alat angkut dump truck hino 500 dutro FM 320 Ti adalah 0,50

3. Waktu Tunggu Alat Gali-Muatan (WtGM)
Besarnya waktu tunggu alat gali-muatan terhadap alat angkut, kombinasi dump truck hino 500 dutro FM 260 Ti dan dump truck hino 500 dutro FM 320 Ti adalah 0,69 menit. Sedangkan besarnya waktu tunggu alat gali-muatan terhadap alat angkut dump truck hino 500 dutro FM 260 Ti adalah 4 menit dan waktu tunggu alat gali-muatan terhadap alat angkut dump truck hino 500 dutro FM 320 Ti adalah 3,28 menit.

3.9. Upaya Peningkatan Kerja Alat Angkut
Upaya meningkatkan kerja alat angkut dapat dilakukan dengan perbaikan terhadap faktor-faktor yang mempengaruhi kemampuan produksi alat angkut dengan meningkatkan waktu kerja efektif. Untuk upaya meningkatkan kerja alat angkut perlu dilakukan perbaikan pada waktu hambatan yaitu pada waktu hambatan yang tidak direncanakan, dengan perincian waktu hambatan yang dapat dihindari ditiadakan dan waktu hambatan yang tidak dapat dihindari diperkecil.

3.10. Kemampuan Produksi Alat Angkut Setelah Upaya Meningkatkan Kerja Alat Angkut
Setelah dilakukan optimalisasi kerja alat angkut yaitu perbaikan terhadap waktu kerja efektif, maka diperoleh kemampuan produksi masing-masing alat.

Dengan adanya optimalisasi kerja alat angkut, yaitu perbaikan terhadap waktu kerja efektif, besarnya kemampuan produksi dari 1 unit alat angkut hino dutro 500 FM 260 Ti meningkat 10.416,6 ton/tahun yaitu dari 26.409 ton/tahun menjadi 36.825,6 ton/tahun, dan untuk jenis alat angkut hino dutro 500 FM 320 Ti meningkat 3.595,1 ton/ tahun yaitu dari 38.203,2 ton/tahun menjadi 41.798,4 ton/tahun.

3.11. Kondisi Jalan Angkut Setelah Perbaikan
PT. Danau Mas Hitam (DMH) Bengkulu menggunakan alat angkut dengan lebar 2,4 m, maka lebar jalan minimum dua jalan pada jalan lurus adalah 8,4 m dan lebar jalan angkut pada saat menikung atau membelok adalah 9.45 m. di lapangan, lebar jalan lurus berkisar 5-6 m, dan jalan membelok 9 m.

<table>
<thead>
<tr>
<th>Loaded</th>
<th>Jalan</th>
<th>Grade (%)</th>
<th>Kondisi jalan (Mendaki)</th>
<th>Lebar jalan (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jalan 12 – jalan 11</td>
<td>- 0,28</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 11 – jalan 10</td>
<td>- 2,56</td>
<td>Berbelok miring</td>
<td>9,45</td>
<td></td>
</tr>
<tr>
<td>Jalan 10 – jalan 9</td>
<td>- 14,28</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 9 – jalan 8</td>
<td>- 14,40</td>
<td>Berbelok miring</td>
<td>9,45</td>
<td></td>
</tr>
<tr>
<td>Jalan 8 – jalan 7</td>
<td>- 29,41</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 7 – jalan 6</td>
<td>- 3,47</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 6 – jalan 5</td>
<td>- 8,91</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 5 – jalan 4</td>
<td>- 8,12</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 4 – jalan 3</td>
<td>- 17,62</td>
<td>Berbelok miring</td>
<td>9,45</td>
<td></td>
</tr>
<tr>
<td>Jalan 3 – jalan 2</td>
<td>- 11,62</td>
<td>Lurus miring</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Jalan 2 – jalan 1</td>
<td>- 5,63</td>
<td>Lurus miring</td>
<td>9,45</td>
<td></td>
</tr>
<tr>
<td>Jalan 1 – jalan stock file</td>
<td>- 15,06</td>
<td>Berbelok miring</td>
<td>9,45</td>
<td></td>
</tr>
</tbody>
</table>
Gambar 2. Lebar minimum jalan angkut (Lm) dua jalur dalam kondisi lurus

Gambar 3. Lebar minimum jalan angkut (Lm) dua jalur dalam kondisi tikungan

3.12. Keserasian Alat Gali Muat Dan Alat Angkut

Jika peningkatan kerja alat gali-muat dan alat angkut telah maksimal, sementara target produksi belum tercapai maka perlu dilakukan penambahan jumlah alat angkut tetapi harus mempertimbangkan segi biaya, apakah efisien atau tidak. Secara teoritis, dengan jumlah alat angkut yang ideal adalah 10 unit. Jumlah tersebut sangat signifikan, untuk itu jika dengan alat angkut yang tersedia target produksi batubara telah dapat dicapai, maka penambahan tidak perlu dilakukan. Jika jumlah alat angkut tersebut dipenuhi, maka akan diperoleh keserasian kerja alat gali-muat dan alat angkut (MF) alat angkut Hino 500 Dutro sebagai berikut:

\[MF = \frac{n_A \times (n_b \times CT_{GM})}{n_{GM} \times CT_A} \]

\[= 10 \times (9 \times 0,31) \]
\[= \frac{2 \times 14,19}{0,98} \]

Itu berarti keserasian alat angkut dan alat gali muat jika ditambah menjadi 10 alat angkut maka keserasiannya 100% sehingga tidak terjadi waktu tunggu pada alat tersebut.
3.13. Keterampilan Operator

4. KESIMPULAN

Berdasarkan uraian dan penjelasan pada bab-bab sebelumnya maka dapat ditarik beberapa kesimpulan antara lain:

1. Upaya meningkatkan kerja alat angkut dilakukan dengan perbaikan terhadap waktu kerja efektif. Sebelum perbaikan waktu kerja efektif diperoleh efisiensi kerja 51,45 \%, sedangkan sesudah perbaikan waktu kerja efektif diperoleh efisiensi kerja 67,67 \%.

2. Upaya meningkatkan produksi dapat dilakukan dengan perbaikan jalan, yaitu perbaikan terhadap lebar jalan, sebelum perbaikan jalan yang ada di lapangan lebar jalan 5-6 m, sedangkan sesudah perbaikan diperoleh lebar jalan lurus minimal 8,4 m, dan jalan berbelok 9,45 m, dilakukan juga alat angkut agar waktu tunggu dapat berkurang dimana sebelum penambahan jumlah alat angkut ada 4 alat angkut, yaitu 2 Alat angkut dumptruck hino duto fm 260 ti dan 2 hino duto fm 320 ti setelah penambahan menjadi 5 alat angkut. dan peningkatan keterampilan operator.

5. DAFTAR PUSTAKA