
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information). 7/2 (2014), 108-115

DOI: http://dx.doi.org/10.21609/jiki.v7i2.264

IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS AND GENERALIZED

LEARNING VECTOR QUANTIZATION TO TRACK AN OBJECT USING AR.DRONE

CAMERA

Muhammad Nanda Kurniawan1 and Didit Widiyanto2

1Faculty of Computer Science, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia

2Faculty of Computer Science, UPN Veteran, Jakarta, Indonesia

E-mail: m_nanda07@mail.com, didit.widiyanto89@gmail.com

Abstract

In this research, Parrot AR.Drone as an Unmanned Aerial Vehicle (UAV) was used to track an object

from above. Development of this system utilized some functions from OpenCV library and Robot

Operating System (ROS). Techniques that were implemented in the system are image processing al-

gorithm (Centroid-Contour Distance (CCD)), feature extraction algorithm (Principal Component Ana-

lysis (PCA)) and an artificial neural network algorithm (Generalized Learning Vector Quantization

(GLVQ)). The final result of this research is a program for AR.Drone to track a moving object on the

floor in fast response time that is under 1 second.

Keywords: Unmanned Aerial Vehicle (UAV), AR.Drone, GLVQ, object tracking

Abstrak

Pada penelitian ini, Parrot AR.Drone digunakan sebagai pesawat tanpa awak untuk menjejaki sebuah

objek dari atas. Pengembangan sistem ini memanfaatkan beberapa fungsi dari pustaka OpenCV dan

Robot Operating System (ROS). Teknik-teknik yang diimplementasikan pada sistem yang dikem-

bangkan adalah algoritma pengolahan citra (Centroid-Contour Distance (CCD)), algoritma ekstraksi

fitur (Principal Component Analysis (PCA)), dan algoritma jaringan syaraf tiruan (Generalized Lear-

ning Vector Quantization (GLVQ)). Hasil akhir dari penelitian ini adalah sebuah program untuk AR.

Drone yang berfungsi untuk menjejaki sebuah objek bergerak di lantai dengan respon waktu yang ce-

pat dibawah satu detik.

Kata Kunci: Pesawat tanpa awak, AR.Drone, GLVQ, penjejakan objek

1. Introduction

Unmanned Aerial Vehicle (UAV) applications ha-

ve emerged to scientific research. Problems that

found on those research are very broad in range

from hardware design, aerodynamic calculation,

object tracking module, localization, and coordi-

nation between UAVs. Now, the race between

researcher to build autonomous UAV system has

emerged [1].

Image processing techniques were used in

many UAV's applications to make they have ca-

pability to recognize object. Object recognition al-

gorithms were developed in many research to sol-

ve various problems. In [2] a system was designed

to do tracking and landing on moving ground tar-

get yet, another task is to classify environment. In

[3], they conducted research to classify vegetation

species at farmland in Northern Australia. In [4],

they used four classification techniques and two

feature extraction techniques to do automatic ve-

hicles detection. Purpose of the system they deve-

lop is to replace patrol service that rely on pilot

visual inspection. The weakness of that conventi-

onal system is the inspection was done in low alti-

tude that would improve the risk. Moreover, that

system sometimes caught by weather condition

restriction.

Techniques that were used are vary depend

on the purpose of the research. In [5], FAST cor-

ners detection and least median square estimation

were used. Besides that, target's states are estimat-

ed by using Kalman Filter. They also used BRIEF

descriptors to made target localization more ro-

bust. In [6], Han Yu and his colleagues developed

a novel video tracking algorithm. That algorithm

integrates differential evolutionary particle filter

and color histogram character. In [7], Shafique

and Sheikh considered elliptical object detection

as their main concern. Their proposed algorithm

which based on Line Following Technique (LFT)

is used to recognize circle, elliptical and nearly

elliptical objects. They also implemented Hough

Transform to compare the results.

108

Muhammad Nanda Kurniawan et al., Implementation of Image Processing 109

We conducted research on implementation of

some computer vision and machine learning algo-

rithms to make the UAV did the mission (task).

The task was it had to follow a specific object (a

cap) on the floor. We utilized some algorithms,

such as gray-level slicing, Centroid-Contour Dis-

tance (CCD), Principal Component Analysis

(PCA), Generalized Learning Vector Quantization

(GLVQ) [8] and standard Proportional Controller

[9]. We will describe those techniques more detail

in Section 2.

2. Methods

In this research AR.Drone quadcopter and a com-

puter with standard Wi-Fi interface were used.

The drone consists of two cameras, some other

sensors, four propellers and control board. It has

carbon fiber support structure so it is quite light-

weight. The battery can provide enough energy to

make AR.Drone flying continuously up to ±10

minutes. When the drone power is being switched

on, an ad-hoc Wi-Fi appears and a computer can

connect to it. After the connection has established,

the user may control the drone and get the infor-

mation such as altitude, battery status and other

sensors data. The AR.Drone has two body cover

(called hull), outdoor and indoor hull. The AR.

Drone with outdoor hull can be seen at Figure 1.

Because the AR.Drone has limited hardware

performance (to run many processes quickly), all

computation processes are running in the compu-

ter. So, the drone only know where to move from

the information send by the computer via Wi-Fi

while continuing to capture images continuously

by using its camera. The AR.Drone has two came-

ras. The first camera is on the front side and the

other camera is at the bottom. The bottom camera

was used to implement object detection and track-

ing system in this research.

The system was built and run on Robot Ope-

rating System (ROS) environment and developed

using C++ programming language. ROS is an op-

en source meta-operating system designed to bui-

ld the robot systems [10]. With ROS, we do not

have to "reinvent the wheel" because it already

has basic modules to develop the system. Besides,

ROS uses the concept of peer-to-peer communica-

tion network between programs. So, some prog-

rams could run simultaneously to do the task.

In this research for example, we run some

programs to do tracking process. Those programs

are the driver of AR.Drone, object detection mo-

dule and position control program. The driver for

the drone we used was AR.Drone Brown package

on ROS. Object detection module and position

control module that we used were developed by

ourselves. The overall system in one time running

can be seen at Figure 2. That system run continu-

ously over time, so each specific time, the system

process images captured by AR.Drone and give

coordinate message.

For basic image handler and processing, we

used OpenCV (Open Computer Vision) library

with ROS. That library is in vision_opencv stack

which consist of several packages [11]. One of the

most important package in that stack is cv_bridge

that has task to bridge between ROS image mes-

sage and OpenCV data structure.

We will give brief description about some

methods we used. First of all, we used standard

grayscaling from raw images and then produced

binary image from the grayscale image with fixed

threshold. After that we process the binary image

with Centroid-Contour Distance (CCD) algorithm.

This is used for getting features from an image

base on object's contour. The features are obtained

by measuring the distance from a fixed point to

surrounding points at the object contour. Wang et.

al. used this technique to get features from leaf

image which is a single object (for image detec-

tion/recognition system) [12]. We used this tech-

nique because our targeted object (the cap) recog-

nition is near characteristic with leaf recognition.

Figure 3 illustrades CCD algorithm. We will des-

cribed more about the implementation of this al-

gorithm in Section 4.

After we got CCD features, we used the po-

pular Principal Component Analysis (PCA) algo-

rithm to further reduce the features. PCA is a tech-

nique that consist of statistics and linear algebra

concepts, especially those are related to dominant

Eigen vectors [13]. Let we describe this algorithm

in brief explanation.

Figure 1. AR.Drone with Outdoor Hull.

Figure 2. Overall System (black box view).

110 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 7, Issue 2,

June 2014

First of all, we find averages (means) from

the matrix data and then we calculate their covari-

ance. After we got the covariance matrix, we de-

compose the Eigen values with their correspond-

ing Eigen vectors from that matrix. The decompo-

sition is as the following equation(1).

 𝑆𝑆𝑛𝑛 = �̅�𝜆𝑈𝑈𝑛𝑛 (1)

In that equation, 𝑆𝑆𝑛𝑛 is covariance matrix, �̅�𝜆 is

Eigen values and 𝑈𝑈𝑛𝑛 is Eigen vectors which corre-

spond with the values. We modified methods from

JAMA: A Java Matrix Package [17] to become

functions in C / C++ in this process. After that, we

sorted the Eigen values from biggest to smallest

value so their corresponding Eigen vectors follow

them. After that we discard some small Eigen va-

lues and vectors (from smallest to a number of th-

at). Finally, we multiply the original data matrix

with reduced Eigen vector matrix. From that oper-

ation, we get the final reduced data matrix. The

flow of the PCA process can be seen at Figure 4.

Data that has reduced by PCA process is

used for neural network training/testing process

using Generalized Learning Vector Quantization

(GLVQ) algorithm. The GLVQ algorithm was de-

veloped by A. Sato and Yamada in 1995 [8]. This

algorithm is variation of Learning Vector Quanti-

zation (LVQ) which assured convergence even

though the data is not sorted. This is happening

because the method is based on cost function min-

imization, i.e. miss-classification error with opti-

mization of gradient descent [15].

The process is started by calculating miss-

classification error using equation(2).

 𝜑𝜑(𝑥𝑥) =
𝑑𝑑1−𝑑𝑑2𝑑𝑑1+𝑑𝑑2 (2)

In this formula, 𝑑𝑑1 and 𝑑𝑑2 is the distance of win-

ner and runner-up class. After we get the error, we

use sigmoid function as cost function. The func-

tion use that error as one of its parameters. The ot-

her parameter is the iteration (𝑡𝑡). The function is

as the following equation(3).

 𝑓𝑓(𝜑𝜑, 𝑡𝑡) =
11+𝑒𝑒−𝜑𝜑𝜑𝜑 (3)

Then, the sigmoid function is differentiated

to get "gain factor" for weight update process usi-

ng equation(4).

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 = 𝑓𝑓(𝜑𝜑, 𝑡𝑡)(1 − 𝑓𝑓(𝜑𝜑, 𝑡𝑡)) (4)

From equation(4), the weight of winner and run-

ner up in neural network's neurons can be updated

using the equation(5) and equation(6).

 𝑤𝑤1 ← 𝑤𝑤1 + 𝛼𝛼 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝑑𝑑2
(𝑑𝑑1+𝑑𝑑2)2 (𝑥𝑥 − 𝑤𝑤1) (5)

 𝑤𝑤2 ← 𝑤𝑤2 − 𝛼𝛼 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 𝑑𝑑1
(𝑑𝑑1+𝑑𝑑2)2 (𝑥𝑥 − 𝑤𝑤2) (6)

In that formula, 𝑥𝑥 is the data and 𝛼𝛼 is learn-

ing rate. Equation(5) and (6) is for training proce-

ss. For testing process, the LVQ family algorithm

only used distance calculation formula to find Eu-

clidean distance.

In tracking process, we used the proportional

controller to control the velocity. This controller is

used because sometimes, drastic changes of fixed

motor controller does not produce a smooth con-

trol behavior [9]. The formula of proportional co-

ntroller is as given by equation(7).

Figure 3. Illustration of Centroid-Contour Distance

(CCD).

Figure 4. Principal Component Analysis (PCA) process

flow

Figure 5. Proportional Controller Schematic [9].

Muhammad Nanda Kurniawan et al., Implementation of Image Processing 111

 𝑅𝑅(𝑡𝑡) = 𝐾𝐾𝑃𝑃(𝑣𝑣𝑑𝑑(𝑡𝑡) − 𝑣𝑣𝑎𝑎(𝑡𝑡)) (7)

In that formula (that always run over time 𝑡𝑡), 𝑅𝑅 is the motor output, 𝑣𝑣𝑑𝑑 is desired velocity and 𝑣𝑣𝑎𝑎 is actual velocity. The most important compo-

nent of this system is 𝐾𝐾𝑃𝑃, constant value / "con-

troller gain". This value will decide the controller

behavior. The schematic of P controller can be se-

en in Figure 5.

The difference between desired and actual

velocity is the error that want to control. That er-

ror than multiplied by 𝐾𝐾𝑃𝑃 to produce the output.

The bigger the value of 𝐾𝐾𝑃𝑃, the response will be

faster. However, that value should still be restrict-

ed because if it is too big, it will cause oscillation

on the system [9].

Data Preparation

After literature study, data preparation consist of

images which representing the class of cap and

non-cap. We captured the images manually by the

AR.Drone bottom camera. There are some criteria

that must be concerned in capturing the images

because they will decide whether the data good or

not. Those criteria are: 1) The cap (object) should

be contrasted with the background; 2) The combi-

nation of hat orientation must be considered; 3)

The distance between cap and the AR.Drone cam-

era must be 1 meter. Because in the experiment

the drone set to only fly 1 meter above the object.

One of the raw image we got by the size of

176 × 144 pixels can be seen at Figure 6. That

image then cut to become 70 × 70 pixels because

with that size in 1 meter distance, the cap is fully

shows in a good proportion. So, the image of this

size will be used in the experiment. Some cut ima-

ges can be seen at Figure 7.

System Development Process

After we got the data, we developed the system to

do object detection and tracking. The big picture

of the development process can be seen at Figure

8. In the development process, we divided the

process into two big steps, without ROS (we call-

ed Stage 1) and with ROS (we called Stage 2). We

will describe the process step by step.

The first thing we did before building the co-

de is preparing the environment and library (ROS

and OpenCV). After the installation step was suc-

cessfully done, we develop the training program

which consists of pre-processing module and neu-

ral network module. In pre-processing module we

used image processing techniques and feature ex-

traction algorithm (PCA) that already described in

Section 2. In neural networks module, we imple-

mented GLVQ training formula that also describ-

ed in Section 2.

In fact, the goal of training program is to get

sorted eigen vectors and weights of neural netwo-

Figure 6. Full image captured by AR.Drone bottom

camera.

(a)

(b)

Figure 7. Sample of cut images: (a) cap images, (b) non-

cap images.

Preparing
development
environment:

OpenCV library
and ROS

Create /
modify

Training
Program

Create / modify
Validation
Program

Accuracy
Ok?

NO

YES

Create / modify
Object Detection

Program
Running
Time Ok?

NO

YES

Development process without ROS

Create Real-time
Object Detection

Program

Modify AR.Drone
Control Program to get

message from Real-
time Object Detection

Program

Development process with ROS

Figure 8. System development process overview.

112 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 7, Issue 2,

June 2014

rk neurons. So we described this from the first st-

ep to the end. First of all, the program read the da-

ta as folders of 70 × 70 pixels images that already

divided into classes (cap and others). The images

from that folder are loaded one by one by the

function from OpenCV, cvLoadImage. By using

this function, we chose the data we want to use,

either BGR (blue-green-red) or grayscale [16]. In

this implementation, we used grayscale image be-

cause later technique we used (CCD) is consider

about the shape and not the colors.

After the grayscale image has gotten, the ne-

xt step is convert it into two values only, 0 and

255. To do that, technique named gray-level slic-

ing (simple thresholding technique for image) is

used. With this technique, some range of graysca-

le value become low value and the others become

high value [14]. We considered the low value is 0

(totally black) and the high value is 255 (white).

After the image only has two values, it then

directed to Centroid-Contour Distance (CCD) pro-

cess. As we already described in Section 2, this

method is calculating distance of points in contour

of object to a pre-decided fixed point. In this pro-

cess we decided the fixed point is the coordinate

of 35 × 35 in pixel of image. Then, we decided to

get the distance for every 1 degree, so we will get

360 feature in full circle. The illustration of the fe-

atures can be seen at Figure 3. The process from

image reading to CCD run continuously until all

images are processed. For every image processing

steps, the data with label (class) is stored in matrix

data.

After we got labeled data that has features

from CCD process, we further reduced the feature

with PCA. We did this because we want the run ti-

me in one cycle process as short as possible at

real-time run using AR.Drone. The eigen vectors

reduce the feature in this process and also stored

in a file named eig_vec.csv to reduce feature at

testing and real-time run later.

After PCA process, the data is processed

with GLVQ algorithm. This is the last step in the

training program. The architecture of neuron for

this process can be seen at Figure 10. From the

process, we will get weights of neurons and store

those values in a file named bobot.csv that will

be used in testing and real-time run.

As we seen at Figure 8, after we finished wi-

th training program, we went to program valida-

tion. This validation program will produce the ou-

tput as percentage of accuracy. Process from read-

ing the data to CCD process is same with training

program. In PCA step, the data matrix is directly

multiply by Eigen vectors from eig_vec.csv. In

GLVQ step, the features are directly compared

with the weights from bobot.csv by using euclide-

an distance. For every true classification, the "hit"

then add by 1. After the data finished processed

with neural network testing step, the hit then di-

vided by the number of data. That operation will

produce accuracy. If the accuracy is not really sa-

tisfying, we modified some parameters in training

Figure 9. Stage 1 program flow.

Figure 10. Neural network architecture in experiment.

Figure 11. Stage 2 program flow.

Muhammad Nanda Kurniawan et al., Implementation of Image Processing 113

program like number of CCD features, number of

features after PCA learning, learning rate or the

number of learning cycle (called epoch).

After we already satisfied with the accuracy,

we built/modified object detection program. This

program reads the image of 176 × 144 pixels size

instead of folders of 70 × 70 pixels images. The

output is object coordinate in that pixel area if an

object has been detected. The most important thi-

ng about this program is this program must run in

reasonable time, which is under 1 second. It is be-

cause this program will modified to real time ob-

ject detection program using ROS. Real time ro-

bot application must be fast enough to response,

so we should not move to the next step of devel-

opment if the running time still not satisfying.

To fulfill the requirement regarding running

time, we propose to only check some grids of

70 × 70 pixel size in full 176 × 144 pixel size.

Because of that, we named this step as "Grid Che-

ck". The rule is we only chose 19 grids to be chec-

ked. Illustration of Grid Check can be seen at Fig-

ure 12. We divided the grids from level 0 to level

2. It checked from center of image to its surround-

ing area. In the experiment using AR.Drone, it sh-

owed great performance that allows the drone res-

ponse quickly in reasonable movements. The ove-

rall of flow program without ROS can be seen at

Figure 9.

In the implementation using ROS, the first

thing we must do in this step is modifying the pre-

vious object detection module. This module must

receive image message from AR.Drone that is ar-

dorne/image_raw. It is a bit different with previ-

ous program which get offline image from the lo-

cal storage. Besides that, some functions and vari-

ables must be changed or modified. Actually, this

task is not really hard if the programmer already

keep up with ROS.

The last task in development process was

modifying the AR.Drone control program. This

program must get object coordinate message from

real time object detection program. Since the ob-

ject coordinate is in pixel coordinate, in control

program, coordinate conversion must be done fir-

st. The coordinate conversion use the following

equation(8) and equation(9).

 𝑥𝑥𝑣𝑣𝑒𝑒𝑣𝑣 = 𝑐𝑐𝑦𝑦 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝 (8)

 𝑦𝑦𝑣𝑣𝑒𝑒𝑣𝑣 = −(𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑐𝑐𝑝𝑝) (9)

In that equations, 𝑐𝑐𝑝𝑝 and 𝑐𝑐𝑦𝑦 is the center of

176 × 144 pixel, i.e. 88 and 72. To see this more

clearly, we should refer to Figure 13 and 14. After

we got the velocity, we used proportional control-

ler to make a smooth movement. From this point,

we said that the development process was done.

The overall flow of program without ROS can be

seen at Figure 11.

Figure 12. Grid Check.

Figure 13. Pixel coordinate in AR.Drone bottom camera.

Figure 14. AR.Drone velocity coordinate.

114 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 7, Issue 2,

June 2014

3. Results and Analysis

In this section, we showed the experimental result

we did. In the experiment, we used packet of trai-

ning and testing data (in image folders). Training

data images can be seen at Figure 15 and the test-

ing data can be seen at Figure 16.

The experiment result can be seen at Table 1.

In that table, we conclude that the experiment pro-

duce good results except for PCA which remains

1 feature. Because the parameter of PCA in 200

features is good and run quickly, we choose that

for real time object detection. For the result in real

time detection using ROS, we can see the experi-

ment and screen shot at Figure 17 and 18.

4. Conclusion

Experiment results show that the implementation

of image processing and neural network GLVQ

algorithm to do object detection and tracking was

success. The running time is short and it have go-

od accuracy in GLVQ validation that is more than

90 percent in average. The running time, which is

under 1 millisecond, that shows at Table 1, is very

good for real time application that need quick res-

ponse. This short time is also coming from great

contribution of feature extraction from CCD tech-

nique after doing some image processing techni-

ques which are grayscaling and thresholding. The

Figure 15. Training data (trainNonCap: first 4 rows,

trainCap: the last row).

Figure 16. Testing data (testNonCap: top rows, testCap:

bottom row).

TABLE I

EXPERIMENTAL RESULT

Experi-ment Testing Data PCA Accuracy Detected Running Time

1 testNonCap and testCap 360 92.54% Yes 1.24 ms

2 testNonCap and testCap 1 74.63% No -

3 testNonCap and testCap 300 92.54% Yes 0.91 ms

4 testNonCap and testCap 200 92.54% Yes 0.88 ms

5 testNonCap and trainCap 200 100.00% Yes 0.88 ms

Figure 17. Real experiment using AR.Drone.

Figure 18. Screen shot of real time object detection.

Muhammad Nanda Kurniawan et al., Implementation of Image Processing 115

feature data reduction using PCA and also Grid

Check techniques also give contribution for this.

In the future works, the real time running

must be done in various heights and in the out-

door. Besides that, the object recognition must be

develop to track or detect more objects. The deve-

lopment of swarm robots is also one of the great-

est challenge in the future. Hopefully those works

can be done in the near future.

Acknowledgement

This work was also coordinated with big research

under research fund which was received by Dr.

Petrus Mursanto and Dr. Eng. Wisnu Jatmiko in

the Faculty of Computer Science Universitas In-

donesia. Gratitude is also addressed to some stu-

dents in the Lab of Computer Networks, Architec-

ture and High Performance Computing in the fac-

ulty with good discussions and some help for pre-

paring the experiments.

References

[1] E. Marris, “Fly, and Bring Me Data,” in

NATURE, Vol. 498, ch. News Feature, pp.

156–158, Macmillan Publishers Limited, Ju-

ne 2013.

[2] J. H. Choi, Won-Suk Lee and H. Bang, “Hel-

icopter Guidance for Vision-based Tracking

and Landing on a Moving Ground Target,”

in 11th International Conference on Control,

Automation and Systems, pp. 867–872, Dae-

jeon, Korea, 2011.

[3] A. Reid, F. Ramos and S. Sukkarieh, “Multi-

Class Classification of Vegetation in Natural

Environments Using an Unmanned Aerial

System,” in International Conference on Ro-

botics and Automation, pp. 2953–2959, Sha-

nghai, China, May 2011.

[4] J. Gleason, A. V. Nefian, X. Bouyssounous-

se, T. Fong and G. Bebis, “Vehicle Detection

from Aerial Imagery,” in International Con-

ference on Robotics and Automation, pp.

2065–2070, Shanghai, China, May 2011.

[5] M. Siam, R. ElSayed and M. ElHelw, “On-

board Multiple Target Detection and Track-

ing on Camera-Equipped Aerial Vehicles,” in

International Conference on Robotics and

Biomimetics, pp. 2399–2405, Guangzhou,

China, December 2012.

[6] H. Yu, W. Longsheng, and Y. Yunzhi, “A Vi-

deo Tracking Algorithm For UAV Based On

Differential Evolution Particle Filter,” in

31st Chinese Control Conference, pp. 3955–

3959, Hefei, China, July 2012.

[7] S. Shafique and N. M. Sheikh, “Simple Al-

gorithm for Detection of Elliptical Objects in

Remotely Sensed Images for UAV Applica-

tions,” in International Bhurban Conference

on Applied Sciences & Technology, pp. 258–

264, Islamabad, Pakistan, January 2009.

[8] A. Sato and K. Yamada, “Generalized Learn-

ing Vector Quantization,” in Advances in Ne-

ural Information Processing Systems (NIPS),

Vol. 7, pp. 423–429, 1995.

[9] T. Bräunl, Embedded Robotics, Mobile Ro-

bot Design and Applications with Embedded

Systems, 2nd ed., Springer, Germany, 2006.

[10] Documentation, http://www.ros.org/wiki, re-

trieved June 18, 2012.

[11] vision_opencv, http://wiki.ros.org/vision_op

encv, retrieved July 3, 2014.

[12] Z. Wang, Z. Chi and D. Feng, “Shape based

leaf image retrieval,” in IEEE Proceedings-

Vision, Image and Signal Processing, Vol.

150, No. 1, pp. 34–43, 2003.

[13] Bernard Kolman and David R. Hill, Elemen-

tary Linear Algebra 8th Edition, Pearson In-

ternational Edition, New Jersey, 2004.

[14] Rafael C. Gonzales and Richard E. Woods,

Digital Image Processing Second Edition,

Pearson International Edition, New Jersey,

2002.

[15] I Made Agus Setiawan, “Sistem Pengenalan

Kelainan Aritmia menggunakan Metode

Fuzzy-Neuro Generalized Learning Vector

Quantization,” Master Thesis, Faculty of Co-

mputer Science, Universitas Indonesia, 2011.

[16] Gary Bradski and Adrian Kaehler, Learning

OpenCV - Computer Vision with the OpenCV

Library, O’Reilly Media, Inc., Sebastopol,

CA, 2008.

[17] Joe Hicklin, “JAMA : A Java Matrix Pack-

age,” http://math.nist.gov/javanumerics/jama

/, retrieved June 18, 2012.

