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Abstract 

 
The rapid progress of computer science has been accompanied by a corresponding 
evolution of computation, from classical computation to quantum computation. As quantum 
computing is on its way to becoming an established discipline of computing science, much 
effort is being put into the development of new quantum algorithms. One of quantum 
algorithms is Grover's algorithm, which is used for searching an element in an unstructured 
list of N elements with quadratic speed-up over classical algorithms. In this work, Quantum 
Computer Language (QCL) is used to make a Grover's quantum search simulation in a 
classical computer document. 
 
Keywords: *URYHU¶V�$OJRULWKP��4XDQWXP�&RPSXWHU�/DQJXDJH��+DGDPDUG-Transform 

 
Abstrak 

 
Pesatnya kemajuan ilmu komputer telah disertai dengan evolusi komputasi yang sesuai, 
mulai dari komputasi klasik hingga komputasi kuantum. Ketika komputasi kuantum berada 
dalam perjalanan untuk menjadi disiplin ilmu komputer yang mapan, banyak usaha telah 
dilakukan dalam pengembangan algoritma kuantum yang baru. Salah satu algoritma 
kuantum adalah algoritma Grover, yang digunakan untuk pencarian sebuah elemen dalam 
suatu daftar elemen N tidak terstruktur dengan ³VSHHG-XS´�NXDGUDW�dibandingkan algoritma 
klasik. Dalam paper ini, Quantum Computer Language (QCL) digunakan untuk membuat 
simulasi pencarian kuantum Grover dalam suatu dokumen komputer klasik. 
 
Kata Kunci: Algoritma Grover, Bahasa Komputer Kuantum, Transformasi-Hadamard 

 
 

1. Introduction 

 

 These instructions give you guidelines for 
preparing papers for Journal of Computer Science 
and Information ± Universitas Indonesia. Use this 
document as a template if you are using Microsoft 
Word 6.0 or later. Otherwise, use this document as 
an instruction set. Instructions about final paper 
and figure submissions in this document are for 
Journal of Computer Science and Information ± 
Universitas Indonesia; please use this document 
DV�D�³WHPSODWH´�WR�SUHSDUH�\RXU�PDQXVFULSW� 
 The rapid progress of computer science has 
been accompanied by a corresponding evolution 
of computation, from classical computation to 
quantum computation. In classical computation, 
computer memory made up of bits, where each bit 
represents either a one or a zero. In quantum 
computation, there are some quantum mechanical 
phenomena, such as superposition and 
entanglement, to perform operations on data. 

 Instead of using bits, quantum computation 
uses qubits (quantum bits). A single qubit can 
represent a one, a zero, or both at the same time, 
which is called superposition. Because of this 
ability, quantum computation can perform many 
tasks simultaneously, faster than classical 
computing. There is also another phenomenon in 
quantum computation which is called 
entanglement. If two qubits get an outside force, 
then those qubits can be entangled condition. It 
means that, even the distance of both qubits is far, 
treating one of them will affect the other qubit 
too. For example, there are two entangled qubits, 
and one of them has spin up (we know it after 
done a measurement). Then without have to 
measure it, we can directly know that the other 
qubit has spin down. Because of this ability, 
communication in quantum computation can 
reach a very high speed because information can 
be transferred instantly, very fast like it 
overmatches the speed of light. 
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 As quantum computing is on its way to 
becoming an established discipline of computing 
science, much effort is being put into the 
development of new quantum algorithms. One of 
quantum algorithms is Grover algorithm, which is 
used for searching an element in an unstructured 
list of N elements with quadratic speed-up over 
classical algorithms. Today, there are some 
quantum programming languages which can be 
used to simulate quantum mechanical and 
quantum algorithm without having a real quantum 
computer. In this work, Quantum Computer 
Language (QCL) will be used WR�PDNH�D�*URYHU¶V�
quantum search simulation in a classical 
computer. 
 This research is related to an invention of a 
quantum search algorithm by Lov K. Grover [1]. 
His invention presents an algorithm, which is 
known as Grover algorithm that is significantly 
faster than any classical algorithm can be. This 
quantum search algorithm can search for an 
element in an unsorted database containing N 

elements only in O( N ) steps, while in the 

models of classical computation, searching an 
unsorted database cannot be done in less than 
linear time (so merely searching through every 
item is optimal), which will be done in O(N) 
steps. Also, this research will also try to simulate 
Grover algorithm in a classical computer using 
one of quantum programming languages, 
Quantum Computer Language (QCL) [2, 3]. 
 In practice, this research can be used as the 
fastest known method or solution for searching an 
element in an unsorted database containing N 
elements. By using the method in this research, 
the searching process can speed-up quadratically 
over classical algorithms. 
 Considered points in this work are: 

1. Is it possible to simulate Grover algorithm in 
a classical computer? 

2. How many qubits and iterations the program 
needed to search an element? 

3. How minimum and maximum the size of 
elements in the database that the program 
can hold? 
 

 The objective of this work is to to make a 
simulation of Grover algorithm using Quantum 
Computer Language (QCL), to know how many 
qubits and iterations needed for the searching 
process, and to know how minimum and 
maximum the size of elements in the database that 
can be hold by the program. 
 This paper concerns on simulating Grover 
algorithm in a classical computer using Quantum 
Computer Language (QCL). The program can 
search a desired element in an unsorted database 
of N elements. 

 This work begins with designing pseudo-
code for Grover algorithm. Then, the design will 
be implemented by using Quantum Computer 
Language. After that, there will be several test to 
know how many qubits and iterations needed for 
the searching process, also to know how 
minimum and maximum the size of elements in 
the database that can be hold by the program. 
 
2. Literature Review 

 

 Computer science has grown faster, made an 
evolution in computation. Research has already 
begun on what comes after our current computing 
revolution. This research has discovered the 
possibility for an entirely new type of computer, 
one that operates according to the laws of 
quantum physics - a quantum computer. 
 
2.1. Way to Quantum Computation 
 Quantum computers were first proposed in 
the 1970s and 1980s by theorists such as Richard 
Feynman, Paul Benioff, and David Deutsch. At 
those times, many scientists doubted that they 
could ever be made practical. Richard Feynman 
was the first to suggest, in a talk in 1981, that 
quantum-mechanical systems might be more 
powerful than classical computers. In this lecture 
[4], reproduced in the International Journal of 
Theoretical Physics in 1982, Feynman asked what 
kind of computer could simulate physics and then 
argued that only a quantum computer could 
simulate quantum physics efficiently. He focused 
on quantum physics rather than classical physics. 
He said that naturH�LVQ¶W�FODVVLFDO��DQG�LI�ZH�ZDQW�
WR�PDNH�D�VLPXODWLRQ�RI�QDWXUH��ZH¶G�EHWWHU�PDNH�

it quantum mechanical, because it does not look 
so easy. Around the same time, in a paper titled 
"Quantum mechanical models of Turing machines 
that dissipate no energy" [5] and related articles, 
Paul Benioff demonstrated that quantum-
mechanical systems could model Turing 
machines. In other words, he proved that quantum 
computation is at least as powerful as classical 
computation. But is quantum computation more 
powerful than classical computation? David 
Deutsch explored this question and more in his 
1985 paper "Quantum theory, the Church-Turing 
principle and the universal quantum computer" 
[6]. First, he introduced quantum counterparts to 
both the Turing machine and the universal Turing 
machine. He then demonstrated that the universal 
quantum computer can do things that the universal 
Turing machine cannot, including generate 
genuinely random numbers, perform some 
parallel calculations in a single register, and 
perfectly simulate physical systems with finite 
dimensional state spaces. In 1989, in "Quantum 
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computational networks"[7], Deutsch described a 
second model for quantum computation: quantum 
circuits. He demonstrated that quantum gates can 
be combined to achieve quantum computation in 
the same way that Boolean gates can be combined 
to achieve classical computation. He then showed 
that quantum circuits can compute anything that 
the universal quantum computer can compute, and 
vice versa. 
 
2.2. Superposition 
 Superposition is the fundamental law of 
quantum mechanics. It defines the collection of all 
possible states that an object can have. 
Superposition means a system can be in two or 
more of its states simultaneously. For example a 
single particle can be traveling along two different 
paths at once. 
 The principle of superposition states that if 
the world can be in any configuration, any 
possible arrangement of particles or fields, and if 
the world could also be in another configuration, 
then the world can also be in a state which is a 
superposition of the two, where the amount of 
each configuration that is in the superposition is 
specified by a complex number. 
 For example, if a particle can be in position 
A and position B, it can also be in a state where it 
is an amount "3i/5" in position A and an amount 
"4/5" in position B. To write this, physicists 
usually say:  
 

������� BAi
5

4

5

3
� \ �����������������������

 
 In the description, only the relative size of 
the different components matter and their angle to 
each other are on the complex plane. This is 
usually stated by declaring that two states which 
are a multiple of one another are the same as far 
as the description of the situation is concerned. 
 

� \D\ | �������������������������������

�
 The fundamental dynamical law of quantum 
mechanics is that the evolution is linear, meaning 
that if the state A turns into $¶ and B turns into %¶ 
after 10 seconds, then after 10 seconds the 
superposition \ turns into a mixture of $¶ and %¶ 

with the same coefficients as $¶ and %¶. 
 Example: A particle can have any position, 
so that there are different states which have any 
value of the position x. These are written: 

x �

 The principle of superposition guarantees 
that there are states which are arbitrary 
superpositions of all the positions with complex 
coefficients: 
 

¦x
xx)(\ �

�
 This sum is defined only if the index x is 
discrete. If the index is over R, then the sum is not 
defined and is replaced by an integral instead. The 

quantity )(x\ is called the wavefunction of the 

particle. 
 If a particle can have some discrete 
orientations of the spin, say the spin can be 

aligned with the z-axis �  or against it � , then 

the particle can have any state of the form: 
 

��� 21 CC �

�
 If the particle has both position and spin, the 
state is a superposition of all possibilities for both: 
 

¦ ��� ��
x

xxxx ,)(,)( \\ �

�
 The configuration space of a quantum 
mechanical system cannot be worked out without 
some physical knowledge. The input is usually the 
allowed different classical configurations, but 
without the duplication of including both position 
and momentum. 
 A pair of particles can be in any combination 
of pairs of positions. A state where one particle is 
at position x and the other is at position y is 

written ¨x,y ². The most general state is a 
superposition of the possibilities: 
 

¦xy
yxyxA ,),( �

�
 The description of the two particles is much 
larger than the description of one particle; it is a 
function in twice the number of dimensions. This 
is also true in probability, when the statistics of 
two random things are correlated. If two particles 
are uncorrelated, the probability distribution for 

their joint position ),( yxP  is a product of the 

probability of finding one at one position and the 
other at the other position: 
 

� )()(),( yPxPyxP yx ����������������������

�
�
�
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 In quantum mechanics, two particles can be 
in special states where the amplitudes of their 
position are uncorrelated. For quantum 
amplitudes, the word entanglement replaces the 
word correlation, but the analogy is exact. A 
disentangled wavefunction has the form: 

 

 )()(),( yxyxA yx \\                    (4) 

�
while an entangled wavefunction does not have 
this form. Like correlation in probability, there are 
many more entangled states than disentangled 
ones. For instance, when two particles which start 
out with an equal amplitude to be anywhere in a 
box have a strong attraction and a way to dissipate 
energy, they can easily come together to make a 
bound state. The bound state still has an equal 
probability to be anywhere, so that each particle is 
equally likely to be everywhere, but the two 
particles will become entangled so that wherever 
one particle is, the other is too. 
 
2.3. Entanglement 
 

 Quantum entanglement, also called the 
quantum non-local connection, is a property of a 
quantum mechanical state of a system of two or 
more objects in which the quantum states of the 
constituting objects are linked together so that one 
object can no longer be adequately described 
without full mention of its counterpart - even if 
the individual objects are spatially separated in a 
space-like manner. The property of entanglement 
was understood in the early days of quantum 
theory, although not by that name. Quantum 
entanglement is at the heart of the EPR paradox 
developed in 1935. This interconnection leads to 
non-classical correlations between observable 
physical properties of remote systems, often 
referred to as nonlocal correlations. 

 Quantum mechanics holds that observable, 
for example, spin are indeterminate until such 
time as some physical intervention is made to 
measure the observable of the object in question. 
In the singlet state of two spins it is equally likely 
that any given particle will be observed to be spin-
up as that it will be spin-down. Measuring any 
number of particles will result in an unpredictable 
series of measures that will tend more and more 
closely to half up and half down. However, if this 
experiment is done with entangled particles the 
results are quite different. For example, when two 
members of an entangled pair are measured, their 
spin measurement results will be correlated. Two 
(out of infinitely many) possibilities are that the 

spins will be found to always have opposite spins 
(in the spin anti-correlated case), or that they will 
always have the same spin (in the spin correlated 
case). Measuring one member of the pair 
therefore tells you what spin the other member 
would have if it were also measured. The distance 
between the two particles is irrelevant. 

 7KHRULHV� LQYROYLQJ� ¶KLGGHQ� YDULDEOHV¶� KDYH�

been proposed in order to explain this result; these 
hidden variables account for the spin of each 
particle, and are determined when the entangled 
pair is created. It may appear then that the hidden 
variables must be in communication no matter 
how far apart the particles are that the hidden 
variable describing one particle must be able to 
change instantly when the other is measured. If 
the hidden variables stop interacting when they 
are far apart, the statistics of multiple 
measurements must obey an inequality (called 
%HOO¶V� LQHTXDOLW\��� ZKLFK� LV�� KRZHYHU�� YLRODWHG� - 
both by quantum mechanical theory and in 
experiments. 

 When pairs of particles are generated by the 
decay of other particles, naturally or through 
induced collision, these pairs may be termed 
"entangled", in that such pairs often necessarily 
have linked and opposite qualities, i.e. of spin or 
charge. The assumption that measurement in 
effect "creates" the state of the measured quality 
goes back to the arguments of, among others: 
Schroedinger, and Einstein, Podolsky, and Rosen 
FRQFHUQLQJ�+HLVHQEHUJ¶V�XQFHUWDLQW\�SULQFLSOH�DQG�

its relation to observation (see also the 
Copenhagen interpretation). The analysis of 
HQWDQJOHG� SDUWLFOHV� E\� PHDQV� RI� %HOO¶V� WKHRUHP��

can lead to an impression of non-locality (that is, 
that there exists a connection between the 
members of such a pair that defies both classical 
and relativistic concepts of space and time). This 
is reasonable if it is assumed that each particle 
GHSDUWV� WKH� VFHQH� RI� WKH� SDLU¶V� FUHDWLRQ� LQ� DQ�

ambiguous state (as per a possible interpretation 
of Heisenberg). In such a case, for a given 
measurement either outcome remains a 
possibility; only measurement itself would 
precipitate a distinct value. On the other hand, if 
each particle departs the scene of its "entangled 
creation" with properties that would 
unambiguously determine the value of the quality 
to be subsequently measured, then a postulated 
instantaneous transmission of information across 
space and time would not be required to account 
for the result. The Bohm interpretation postulates 
that a guide wave exists connecting what are 
perceived as individual particles such that the 
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supposed hidden variables are actually the 
particles themselves existing as functions of that 
wave. 

 Observation of wavefunction collapse can 
lead to the impression that measurements 
performed on one system instantaneously 
influence other systems entangled with the 
measured system, even when far apart. Yet 
another interpretation of this phenomenon is that 
quantum entanglement does not necessarily 
enable the transmission of classical information 
faster than the speed of light because a classical 
information channel is required to complete the 
process. 

 
2.4. Hadamard Transform 
 

 The Hadamard transform (also known as the 
Walsh-Hadamard-transform, Hadamard-Radema-
cher-Walsh-transform, Walsh-transform, or 
Walsh-Fourier transform) is an example of a 
generalized class of Fourier transforms. It is 
named for the French mathematician Jacques 
Solomon Hadamard, the German-American 
mathematician Hans Adolph Rademacher, and the 
American mathematician Joseph Leonard Walsh. 
It performs an orthogonal, symmetric, 
involutional, linear operation on m2 real numbers 

(or complex numbers, although the Hadamard 
matrices themselves are purely real). 
 The Hadamard transform can be regarded as 
being built out of size-2 discrete Fourier 
transforms (DFTs), and is in fact equivalent to a 
multidimensional DFT of size 2222 uu � . It 
decomposes an arbitrary input vector into a 
superposition of Walsh functions. 

 The Hadamard transform mH  is a mm 22 u

matrix, the Hadamard matrix (scaled by a 
normalization factor), that transforms m2 real 

numbers x into m2  real numbers kx . The 

Hadamard transform can be defined in two ways: 
recursively, or by using the binary (base-2) 

representation of the indices n  and k . 

 Recursively, we define the 11u  Hadamard 

transform 0H  by the identity 10  H , and then 

define mH  for m > 0 by: 

 ¸̧
¹

·
¨̈
©

§

�
 

��

��

11

11

2

1

mm

mm
m

HH

HH
H                          (5) 

where the 2/1  is a normalization that is 
sometimes omitted. Thus, other than this 
normalization factor, the Hadamard matrices are 
made up entirely of 1 and -1. 

 Equivalently, we can define the Hadamard 
matrix by its (k, n)-th entry by writing 

,222= 01
2

2
1

1 kkkkk
m

m
m

m ���� �
�

�
� � �������(6) 

and 

,222= 01
2

2
1

1 nnnnn
m

m
m

m ���� �
�

�
� � �������(7) 

where the kj and nj are the binary digits (0 or 1) of 
n and k, respectively. In this case, we have: 

� � .1)(
2

1
=

/2,

¦� j jjnk

mnkmH                               (8) 

This is exactly the multidimensional 
2222 uuuu �  DFT, normalized to be unitary, if 

the inputs and outputs are regarded as 

multidimensional arrays indexed by the jn and 

jk , respectively. Some examples of the Hadamard 

matrices follow. 

 
� 1=0 �H ��������������������������������������������������������(9) 
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 This H1 is precisely the size-2 DFT. It can 
also be regarded as the Fourier transform on the 
two-element additive group of Z/(2). 
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=)(

/2,
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njinH
�� �����������������������������������(13) 

 
where i  j is the bitwise dot product of the binary 
representations of the numbers i and j. For 
example,  
 



Rina Refianti, et al., Simulation of Quantum Search 81 
 

 

 
 
agreeing with the above (ignoring the overall 
constant). Note that the first row, first column of 

the matrix is denoted by 00H . The rows of the 

Hadamard matrices are the Walsh functions. 
 In quantum information processing the 
Hadamard transformation, more often called 
Hadamard gate, is a one-qubit rotation, mapping 

the qubit-basis states ²0| and ²1| to two 

superposition states with equal weight of the 

computational basis states ²0| and ²1| . Usually 

the phases are chosen so that we have 
 

|1
2

1|0|
|0

2

1|0|
¢

²²�
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²²�
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in Dirac notation. This corresponds to the 
transformation matrix 
 

��������� ¸̧
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1
=1H ����������������������������������(14) 

�
in the ²0| , ²1| basis. 

 Many quantum algorithms use the Hadamard 
transform as an initial step, since it maps n qubits 
initialized with ²0| to a superposition of all n2  

orthogonal states in the ²0| , ²1| basis with equal 

weight. Hadamard gate operations: 
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2.5. *URYHU¶V�4XDQWXP�6HDUFK�$OJRULWKP 
 

 One of the most celebrated achievement of 
TXDQWXP� FRPSXWDWLRQ� LV� /RY� *URYHU¶V� TXDQWXP 

VHDUFK� DOJRULWKP� �NQRZQ� DV�*URYHU¶V� DOJRULWKP���

ZKLFK�ZDV� LQYHQWHG� LQ� ������*URYHU¶V� DOJRULWKP�

is a quantum algorithm for searching an unsorted 
database with N entries in O(N1/2) time and using 
O(log N) storage space. 

 In models of classical computation, 
searching an unsorted database cannot be done in 
less than linear time (so merely searching through 
HYHU\� LWHP� LV� RSWLPDO��� *URYHU¶V� DOJRULWKP�

illustrates that in the quantum model searching 
can be done faster than this; in fact its time 
complexity O(N1/2) is asymptotically the fastest 
possible for searching an unsorted database in the 
quantum model. It provides a quadratic speedup. 

 There are already related works about 
Grover algorithm, such as done by Matthew 
Whitehead, Ahmed Younes, and C. Lavor et.al., 
0DWWKHZ� :KLWHKHDG¶V� SDSHU [8] shows how 
*URYHU¶V�TXDQWXP�VHDUFK�PD\�EH�XVHG�WR�LPSURYH�

the effectiveness of traditional genetic search on a 
classical computer. He uses repeated applications 
RI�*URYHU¶V�$OJRULWKP� WR� JHW� D� YDULHW\� RI� GHFHQW�

chromosomes that will then be used to form a 
starting population for classical genetic search. He 
also provides the pseudo code for the modified 
genetic search, which is a combination between 
*URYHU¶V� TXDQWXP� VHDUFK� DQG� VWDQGDUG� JHQHWLF�

search. Another work related to Grover algorithm 
is done by Ahmed Younes. In his paper [9], he 
described the peUIRUPDQFH�RI�*URYHU¶V�DOJRULWKP, 
and also wrote a review about Grover algorithm 
by means of a detailed geometrical interpretation 
and a worked out example. Some basic concepts 
of Quantum Mechanics and quantum circuits are 
also reviewed. 

 
3. Design and Implementation 

 
 Many problems in classical computer 

science can be reformulated as searching a list for 
a unique element which matches some predefined 
condition. If no additional knowledge about the 
search-condition C is available, the best classical 
algorithm is a brute-force search i.e. the elements 
are sequentially tested against C and as soon as an 
element matches the condition, the algorithm 
terminates. For a list of N elements, this requires 
an average of N/2 comparisons. By taking 
advantage of quantum parallelism and 
interference, Grover found a quantum algorithm 
[1] which can find the matching element in only 

O( N )steps. 

 In this paper, Grover algorithm and its 
implementation will be explained process by 
process. The algorithm consists of two parts: (1) 

1=1)(=1)(=1)(=1)(= 101(1,0)(1,1)23
32 ����� ���

H
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Input and initialization (2) Main loop. Each of the 
parts will be explained and implemented one by 
one below. 

 

3.1. Input and Initialization 

3.1.1. Input 

 This simulation needs to know what number 
it should search, so user will be prompted to input 
a round number (integer). The implementation of 
this input process can be seen below. 
input "Enter an integer that that 

will be find:",bil; 

 In the code implementation above we can 
see that bil is a variable that is used to store the 
round number. 
 

3.1.2. Initialization 

 Initialization is a process to initiate variables 
and qubit registers needed in the simulation. 

 The most important variables that we have to 
initiate are the number of qubits and the number 
of iterations needed. Assume that the number of 
qubits is called sumqubit, and the number of 
iterations is called iteration. 
To calculate the number of qubits needed, we can 
use this formula: 

� ¼�¬ 1)log(= 2bilsumqubit ����������������������������(19) 

To calculate the number of iterations needed, we 
can use this formula: 

� ºª sumqubit
iteration 2*/8= S ������������������������(20) 

 Then, after the value of both sumqubit and 
iteration are known, another important step to do 
is to set up the registers for each qubits. Also, 
some variables need to be listed to for common 
process; looping, storing result, etc. The code 
implementation for initialization can be seen 
below. 

 
int sumqubit = floor(log(bil,2))+1; 

int iteration = ceil(pi/8*sqrt 

2^sumqubit)); 

int rmeasurement; 

int i; 

qureg q[sumqubit]; 

qureg f[1]; 

print "Number of qubit 

are used:",sumqubit; 

print "Number of iteration 

are needed:",iteration; 

print "start searching process.."; 

 

3.1.3. Main Loop 

 Main loop is the main process to begin 
searching. The steps to do in the main loop are: 

1. Reset all qubits to 0  and apply the 

Hadamard transform to each of them. 
2. Repeat the following operation as much as 

the number of iterations needed (see the 
initialization part): 

x Rotate the marked state by a phase of S  

radians ( S
fI ). A query function needs to 

be applied. The query function is needed 
to flip the variable f if x (the qubits) is 
equal to 1111... 

x Apply a phase process between S  and f. 

x Undo the query function. 
x Apply a diffusion function. The process 

are apply Hadamard transform, invert q, 
then apply a phase process between S
and q (rotate if q=1111..). After that, 
undo the invert process and undo 
Hadamard transform. 

x Do an oracle function by measure the 
quantum register that has been found, 
and then compare the result to the input. 
 

 These iterations must be repeated again if the 
measurement result does not match with the 
wanted number. 

 The code implementation of the main loop 
including the functions in it can be seen below. 
{ 

    reset; 

    H(q); 

    for i= 1 to iteration { 

        print "Iteration",i; 

        query(q,f,bil); 

        CPhase(pi,f); 

        !query(q,f,bil); 

        diffuse(q); 

    } 

        oracle(q,rmeasurement,bil); 

    }       until rmeasurement==bil; 

    reset; 

} 

 
3.1.4. Query Procedure 
procedure query(qureg x,quvoid f,int bil) 

{ 

    int i; 

    for i=0 to #x-1 { 

        if not bit(bil,i) 

            {Not(x[i]);} 

    } 

    CNot(f,x); 

    for i=0 to #x-1 { 

        if not bit(bil,i) 

            {!Not(x[i]);} 

    } 

} 

 
3.1.5. Diffuse Procedure 
procedure diffuse(qureg q) 

{ 

    H(q); 

    Not(q); 
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    CPhase(pi,q); 

    !Not(q); 

    !H(q); 

} 

 
3.1.6. Oracle Procedure 

 This procedure is for checking whether the 
measurement result is match with the wanted 
number or not. In general, the oracle function can 
be formulated as below. 

¯
®
­

z

 
 

0

0

0

1
)(

xxif

xxif
xf  

x is the indexes in the database, and x0 is the 
wanted index. Back to the simulation, before we 
implement the oracle, we need to do a 
measurement to check if the number that been 
found is already matched with the wanted number. 
The code implementation can be seen below. 
 
procedure oracle(qureg q,int hasil- 

measurement,bil) 

{ 

    measure q,rmeasurement; 

    if rmeasurement==bil { 

    print "result of measurement:", 

    rmeasurement; 

    print "has equaled with the 

    searched number..."; 

    } 

    else { 

    print "result of measurement:", 

    rmeasurement; 

    print "not equaled with the 

    searched number..."; 

   } 

} 

 

4. Results and Discussion 

 
 The GURYHU¶V�TXDQWXP�VHDUFK�simulation can 

be running from LLQX[¶V�WHUPLQDO��E\�JRLQJ�WR�WKH�
directory where the file is put in then typing "qcl -
i -b32 SimulasiGrover.qcl". This command will 
start QCL then run a file named 
SimulasiGrover.qcl, and providing all qubits that 
QCL has (32 qubits). 

 To discuss the results of the program, Table 
I. containing ten outputs from GURYHU¶V� TXDQWXP�
search simulation program is provided. 

In Table I, column "Input" is for the number 
that the user wants to find. Column "Qubits" is the 
total of qubits needed to search the number. 
Column "Iterations" is the total iterations needed 
to find one number to be measuring. Column "List 
of Measured Numbers" is the list of numbers that 
are found and get measured until the number is 
same to the input. Column "Total Iterations" is the 
total of iterations needed to find the correct 
number. The value of this column is the 
multiplication of the value in column "Iterations" 

and the amount of numbers in column "List of 
Measured Number. 

 
TABLE I 

OUTPUTS FROM THE PROGRAM 
 

Input 
 

Qubits 
 

Iterations 
List of 

Measured 
Total 

   Number Iterations 
10 4 2 10 2 
30 5 3 30 3 

175 8 7 175 7 
500 9 9 373 - 500 18 

1000 10 13 327 - 1000 26 
1676 11 18 1676 18 

2000 11 18 
1645 - 1497 -
1493 - 703 - 

2000 
90 

2200 12 26 
3765 - 2349 - 

2200 
78 

8111 13 36 8111 36 
9999 14 54 9999 54 

 
 From the table, we can see that the number 

of qubits and the number of iterations needed are 
depend on the value of the number that user wants 
to find. If the number is bigger, so will the qubits 
and the iterations be. Sometimes, the number that 
the program found is not matched with the input. 
If this condition is happen, the program will do 
the iterations again until the number is matched 
with the input. But even the program do the 
iterations more than one round, the total iterations 
is never exceed the value of the input. We can see 
this from the table in the column "Total 
IWHUDWLRQV��� %XW� WKLV� *URYHU¶V� TXDQWXP� VHDUFK�
simulation has a limitation; the maximum qubits 
that the program can use is only 32 qubits (QCL 
limitation). For the possible real implementation, 
Grover¶V algorithm can be used for searching a 
record in database and improving the traditional 
genetic search. 
 
5. Concluding Remarks 

 
 8VLQJ� 4&/�� D� *URYHU¶V� TXDQWXP� VHDUFK�

simulation has been made. It is performed without 
using a quantum computer, but using a classic 
computer. To search an element, the program 
needs to use qubit instead of bit. The number of 
qubits needed depend on the value of the number 
that we want to find. The bigger the value of the 
number, the bigger qubits needed. It goes the 
same with the number of iterations needed. The 
minimum value for the number is 1, and the 
maximum value is depending on the qubits 
needed. At this far, the program has been tested to 
VHDUFK� QXPEHU� WLOO� ������ 7KLV� *URYHU¶V� TXDQWXP�

search is just a simulation to simulate the 
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algorithm, not a real quantum searching program 
that can be implemented on the real database. 

 7KLV� *URYHU¶V� TXDQWXP� VHDUFK� is just a 
simulation of quantum search in a classic 
computer. That is some possible works for the 
future related to Grover algorithm. Some of them 
is implementing Grover algorithm in a real 
database using quantum computer, but in this 
case, the database must be converted in to 
quantum states which is probably the most 
difficult thing to do. Another possible work is 
improving the traditional genetic search by 
combine it with Grover¶V algorithm. 

 
Appendix 

 

Listing Program 

procedure query(qureg x,quvoid f,int bil) 

{ 

    int i; 

    for i=0 to #x-1 {     // x -> NOT 

                          // (x XOR bil) 
        if not bit(bil,i) 

        {Not(x[i]);} 

    } 

    CNot(f,x);            // flip f 

                          // if x=1111.. 

    for i=0 to #x-1 {     // x <- NOT 

                          // (x XOR bil) 

        if not bit(bil,i) 

            {!Not(x[i]);} 

    } 

} 

procedure diffusi(qureg q)  

{ 

    H(q);              // Hadamard 

                       // Transformation 

                       // (superposisi) 

    Not(q);            // Inversi q 

    CPhase(pi,q);      // Rotate 

                       // if q=1111.. 

    !Not(q);           // undo inversi 

    !H(q);             // undo 

                       // Hadamard 

                       // Transformation 

} 

 

procedure algoritma(int bil) 

{ 

    int sumqubit = floor(log(bil,2))+1; 

                       // number of 

                       // qubit 

    int iteration = ceil(pi/8*sqrt 

                  (2^sumqubit)); 

                       // number of 

                       // iterasi 

    int rmeasurement; 

    int i; 

    qureg q[sumqubit]; 

    qureg f[1]; 

    print "Number of qubit 

          are used:",sumqubit; 
    print "Number of iteration 

    are needed:",iteration; 

    print "Start searching process..."; 

    { 

    reset;  // clean the register 

    H(q);  // superposition arrangments 

    for i= 1 to iterasi { 

             // main loop 

    print "Iteration",i; 

    query(q,f,bil); 

            // count C(q) 

    CPhase(pi,f); 

            // negation |n> 

    !query(q,f,bil); 

           // undo C(q) 

    diffusi(q); 

    } 

    //oracle 

    measure q,rmeasurement; 

                   // measurement 

    if rmeasurement==bil { 

    print "result of measurement:", 

    rmeasurement; 

    print "has been equal with the 

    searched number..."; 

    } 

    else { 

    print "result of measurement:", 

    rmeasurement; 

    print "has not been equal with 

    the search number..."; 

    } 

    } until rmeasurement==bil; 

    reset; // clean the register 

} 

procedure start(){ 

    int bil; 

    print; 

    print "--------------------------"; 

    print; 

    print "SIMULATION of QUANTUM SEARCH 

    Using GROVER's ALGORITHM"; 

    print; 

    input "Enter an integer 

    that will be searched:",bil; 

    algoritma(bil); 

    print; 

    print "--------------------------"; 

} 
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