CARA MENGHILANGKAN RASA DAN BAU PADA PENGOLAHAN AIR MINUM

Olah Sri Soewasti Soesanto
Ahli Peneliti Utama pada Puslit Ekologi Kesehatan

Pendahuluan

S
alah satu syarat kualitas air minum adalah tidak berwarna, tidak ada rasa, dan tidak berbau. Kebanyakan konsumen air minum menilai baik tidak kualitas air minum hanya secara visual, keruh atau jernih, berwarna atau tidak dan dengan indera pengecap apakah ada rasa atau tidak serta dengan indera pencium; berbau atau tidak. Tulisan ini hanya akan membahas dua aspek yaitu rasa dan bau yang sering dikeluhkan oleh konsumen.

Sumber kontaminasi yang menimbulkan rasa dan bau dalam air dapat bersifat alami maupun antropogenik10. Kontaminasi dapat berasal dari effluen industri, rumah tangga, dan limbah pertanian atau sebagai hasil metabolisme dari alga dan mikroorganisme heterotrofik seperti Actinomycetes dalam badan air atau tanah.24,25,26 Di samping itu disinfeksi yang digunakan dalam pengolahan air dapat bereaksi dengan bahan kimia yang ada dalam air baku dan menghasilkan produk samping yang berbau.26 Misalnya, klorophenol dapat terbentuk jika air yang mengandung kadar seangin phenol (dari sumber alami atau industri) atau bahan organik alami (asam humik dan falvik) kemendas diiklorinisasi.26

Sumber alami penyebab timbulnya rasa dan bau berkaitan dengan peledakan populasi (bloom) diatoma (Asterionella, Diatoma) atau Chrysophytes (Dinobryon, Uroglena).27,28 Lamanya peledakan populasi dan intensitas bau yang berhubungan dengan hal ini sangat bervariasi, tetapi secara konsisten konsumen menyatakan bahwa air minum umumnya berbau sepertiikan, jamu, dan tanah.

Pengukuran Rasa dan Bau

Meskipun konsumen biasanya melaporkan rasa air sebagai penyebab masalah, dalam kenyataan sebenarnya yang diterima adalah bau10. Karena hanya ada empat sensasi rasa dasar; manis, asin, pahit, dan asam, lainnya terdeteksi oleh sistem olfactory (penciuman), meskipun sampel telah dimasukkan ke mulut13.

Pengukuran rasa dan bau adalah proses yang kompleks, karena dapat diperoleh perbedaan yang mencolok dalam respon, tidak hanya antar individu terhadap senyawa tertentu21,23, tetapi juga untuk individu dari hari ke hari14. Selalu ada individu tertentu yang amat peka terhadap sejumlah bahan kimia dengan tingkat serta kualitas rasa dan bau yang dianggap dapat diterima mungkin sangat bervariasi.

Walau ada kesulitan dalam pengukuran tetapi perusahaan air minum diharapkan dapat menyediakan air yang dapat diterima oleh konsumen, antara lain dari segi rasa dan bau.

Cara Pengolahan

Untuk menghilangkan rasa dan bau karena sebab alami ada beberapa pilihan cara pengolahan yaitu sedimentasi konvensional secara gaya berat (Conventional Gravity Sedimentation = CGS) dan pengembangan udara terlarut (Dissolved Air Flotation = DAF), ozonisasi dan filtrasi dengan karbon aktif granular (Granular Activated Carbon = GAC).

Bila keempat cara tersebut dibandingkan, hasilnya menunjukkan sebagai berikut

1) Penjernihan air dengan DAF menghasilkan air yang kekeruhan dan banyaknya partikel lebih rendah daripada CGS; jumlah partikel rata-rata pada DAF dan CGS berturut-turut 3600 dan 7500 partikel/ml.

2) Baik pada DAF maupun CGS, efisiensi proses menghilangkan phytoplankton pada air dengan biomassa yang lebih rendah (± 250 ug/l) kurang dibandingkan yang lebih tinggi konsentrasi (1750 ug/l). Efisiensi berkisar antara 29 -- 85 % (DAF) dan 21 -- 49% (CGS).

3) Ozon mengubah bau seperti ikan, atau seperti plastik yang juga tak diinginkan.

4) Hanya filtrasi melalui GAC/filter pasir menghilangkan semua bau.

5) Untuk menghilangkan senyawa terlarut seperti warna dan karbon organik total (Total Organic Carbon = TOC) tampak sama baik dengan DAF maupun CGS. Tetapi bila terjadi peledakan populasi fitoplankton, pengurangan TOC dengan DAF lebih besar dari pada CGS.

6) Pengurangan TOC dan warna dengan GAC jauh lebih besar dari pada dengan filter antrasit.

Kombinasi penjernihan dengan DAF dan filtrasi dengan GAC adalah kombinasi pengolahan yang paling efektif untuk mengurangi partikel, warna, rasa, dan bau.

Bersambung ke hal 5
PENGARUH FAKTOR KETURUNAN DAN LINGKUNGAN TERHADAP SIFAT-SIFAT BIOLOGIS YANG TERLIHAT PADA HEWAN PERCOBAAN

Oleh:
Subahagio\(^7\); Imu Rahman\(^7\); Deni Ibnusahni\(^7\); Sutardjo\(^7\) dan M. Edhie Sulaksono\(^**)\)
\(^7\) Teknis Litkayasa pada Puslit Penyakit Menular, Badan Litbangkes
\(^7\) Peneliti Muda pada Puslit Penyakit Menular, Badan Litbangkes

Pendahuluan

Hewan sebagai model atau sarana percobaan haruslah memenuhi persyaratan-persyaratan tertentu, antara lain persyaratan genetis/keturunan dan lingkungan yang memadai dalam pengelolaannya, disamping faktor ekonomi, mudah didapatkan dan mampu memberikan reaksi biologis. Ditinjau dari segi sistem pengelolaannya atau cara pemeliharaannya, yang mana faktor keturunan dan lingkungan berhubungan dengan sifat biologis yang terlihat dari hewan percobaan, maka ada lima golongan hewan yaitu:
1. hewan liar (hewan yang hidup secara liar);
2. hewan yang konvensional (conventional animals) hewan yang dipelihara dengan sistem terbuka;
3. hewan yang bebas kuman terbatas pada lingkungan yang bersih dan bebas dari kuman (cleaned animals);
4. hewan yang bebas kuman spesifik yang patogen/mematik (specific pathogen free animals) yang dihasilkan dari sistem pemeliharaan barfied (tertutup);
5. hewan yang bebas sama sekali dari benih kuman (germ free animals) hasil dari sistem pengembangbiakan dalam isolator.

Penggunaan hewan percobaan tersebut di atas disesuaikan dengan macam percobaan biomedis yang akan dilakukan. Semakin meningkat kualitas cara pemeliharaannya, semakin sempurna pula percobaan yang dilakukan. Sebagai contoh, apabila suatu percobaan biomedis dilakukan terhadap hewan percobaan liar maka hasilnya akan berbeda nyata dengan hewan yang konvensional bahkan yang bebas kuman.

Faktor Genetis dari Hewan Percobaan

Faktor keturunan merupakan salah satu faktor yang ikut menentukan hasil sifat-sifat biomedis yang terlihat dari hewan percobaan atau yang lazim disebut dengan fenotipe. Faktor keturunan adalah unsur-unsur yang dianggap mempunyai sifat-sifat turunan yang diwarisi oleh kedua orang tua kandung kepada keturunannya.

Ada dua macam sifat-sifat yang diturunkan yang menghasilkan suatu fenotipe hewan yaitu:
1. Sifat turunan yang kualitatif (tidak dapat diukur), misalnya warna bulu (hitam, coklat, atau warna campuran), sifat mudah dan cepat menjadi besar, kemampuan untuk membentuk dagang yang lebih cepat, golongan darah, kemampuan memberikan reaksi kekebalan dan lain sebagainya.
2. Sifat turunan yang kuantitatif (dapat diukur), misalnya produksi anak per kelahiran (litter size) dan lain sebagainya.

Sifat-sifat turunan ini pada dasarnya diatur oleh adanya suatu gen, yaitu suatu unit dasar pembentukan sifat-sifat tadi, yang diterimanya dari kedua tetu, sedangkan jumlah gen yang diwariskan kepada anaknya, beberapa tepatnya tidak ada orang yang tahu. Sedangkan suatu gen-gen gen yang membedakan sifat, bentuk atau karakter (fenotipe) individu turunannya dinamakan genotipe.

Faktor Lingkungan (dl luar faktor keturunan)

Yang dimaksud dengan faktor lingkungan antara lain adalah iklim setempat, suhu, makanan hewan yang diberikan, cara perawatannya, program pemberantasan dan pencegahan penyakit dan lain sebagainya.

Alam dengan situasi lingkungan yang berbeda-beda, memberikan banyak variasi lingkungan yang sangat penting dipandang dari segi genetis/keturunan, karena:
1. Faktor lingkungan dapat menutupi variasi (perbedaan-perbedaan) yang ditimbulkan oleh faktor keturunan/genetis.
2. Keadain lingkungan tertentu dibutuhkan suatu individu (dalam hal ini hewan percobaan) untuk
ARTIKEL

dapat memberikan keturunan yang baik.

3. Faktor lingkungan jelas tidak dapat diturunkan tetua kepada anaknya.

Misalnya dalam hal kemampuan bertumbuh dari *Marmut Hartley Strain*, dimana hewan ini mempunyai kemampuan genetis baik sekali dan mempunyai sifat rentan terhadap kuman penyebab tuberkulosis. Dalam jangka waktu kurang lebih 30 hari setelah lahir, mampu menghasilkan berat badan kurang lebih 250 – 300 gram (berdasarkan hasil observasi kelompok unit hewan percobaan), sedangkan untuk marmut lokal karena tidak mempunyai kemampuan genetik yang baik (karena program breeding yang tidak terkontrol) sangat sulit mencapai berat yang sama dalam waktu yang sama pula.

Persoalannya adalah apabila Marmut Hartley Strain tersebut tidak dipelihara dalam lingkungan yang baik (suhu, kelembaban, maupun perawatan), sedangkan hewan ini mempunyai kemampuan bertumbuh baik sekali secara genetis, maka akan sia-sialah pekerjaan yang selama ini telah dilakukan.

Sifat-Sifat Biologi (Fenotipe) dari Hewan Percobaan

Sifat-sifat ini juga dinamakan fenotipe, misalnya bentuk tubuh, produksi anak (litter size), warna bulu, golongan darah serta cacat-cacat yang nampak dapaan tubuhnya. Sifat-sifat karakteristik ini selamanya akan timbul karena adanya kerjasama antara faktor keturunan dan faktor lingkungan. Jadi adanya berbagai macam bentuk/sifat yang terlihat dari hewan percobaan (disebut dengan variasi fenotipe), disebabkan oleh karena perbedaan-perbedaan yang ditimbulkan oleh faktor genetis/keturunan dan faktor lingkungan.

Pengaruh Faktor Keturunan dan Lingkungan Terhadap Sifat-Sifat Biologi yang Terlihat (Fenotipe) dari Hewan Percobaan

Secara matematatis/perhitungan aljabar pengaruh faktor keturunan dan lingkungan terhadap fenotipe hewan percobaan dapat digambarkan sebagai berikut:

\[K + L \text{ Variasi } K \& L = P \]

\[K = \text{ faktor keturunan} \]

\[L = \text{ faktor lingkungan} \]

\[P = \text{ fenotipe} \]

1. \[K \text{ (sama)} + L \text{ (sama)} = P \text{ (sama)} \]

Artinya : apabila terdapat dua kelompok/grup hewan percobaan atau lebih (mencit, misalnya) yang berasal dari keturunan yang sama (sama-sama unggul) dalam hal ini faktor K sama, medapat perluakan yang sama pula (iklim, makanan/minuman maupun perawatan) (dalam hal ini faktor L sama), maka akan dihasilkan hewan yang berfenotipe yang baik pula (P sama).

2. \[K \text{ (berbeda)} + L \text{ (sama)} = P \text{ (berbeda)} \]

Artinya : apabila terdapat dua atau lebih kelompok hewan percobaan yang berasal dari keturunan yang berlainan dan mendapat perlakuan yang sama, maka akan dihasilkan fenotipe dari kedua kelompok hewan tadi yang berlainan satu sama lainnya.

3. \[K \text{ (sama)} + L \text{ (berbeda)} = P \text{ (berbeda)} \]

Artinya : walaupun terdapat dua kelompok hewan percobaan yang sama unggulnya apabila dipelihara dalam lingkungan yang berbeda (yang satu baik sekali dan lainnya jelek), maka akan dihasilkan fenotipe dari kedua kelompok hewan tadi akan berbeda pula.

4. \[K \text{ (berbeda)} + L \text{ (berbeda)} = P \text{ (berbeda)} \]

Artinya : fenotipe dari kedua kelompok hewan percobaan tadi akan berbeda sekali bila masing-masing kelompok berasal dari keturunan yang berlainan dan dipelihara dalam lingkungan yang berbeda pula.

Pengaruh Faktor Keturunan dan Lingkungan Terhadap Hasil Suatu Percobaan

Yang dimaksud dengan percobaan biomedis antara lain adalah percobaan potensi produk biologi (misalnya : vaksin, anti sera), tes keracunan, percobaan dibidang virologi, immunologi, farmasi dan sebagainya. Semua percobaan tersebut menggunakan hewan percobaan sebagai modelnya sebelum percobaan tersebut diterapkan pada manusia.

Sebagai persyaratan proses yang terjadi pada hewan percobaan yang digunakan haruslah sama atau banyak kesamaannya dalam proses yang terjadi pada manusia.

Disamping itu susunan gentis yang hampir sama (diperlukan usaha pembiakan yang terarah dan teratur sesuai dengan sistem yang ada dalam program pembiakan/breeding) dan lingkungan yang memadai sebagai penunjang faktor genetis sangat berpengaruh terhadap karakteristik/bentukan hewan percobaan itu sendiri.

Secara immunologis untuk menentukan grup mencit yang paling baik (apabila terdapat beberapa macam grup mencit) antara lain dengan melalui percobaan pemeriksaan potensi vaksin baik tetanus maupun pertusis misalnya.

Masing-masing grup mencit diimunisasi sehingga akan memberikan reaksi kekebalan yang berlainan. Berdasarkan analisa statistik, grup mencit yang memberikan reaksi kekebalan yang paling baik (tinggi) dianggap merupakan grup mencit yang paling baik pula.

Adapun reaksi kekebalan tersebut masih harus dipengaruhi oleh mekanisme kekebalan yang ada dalam tubuh antara lain genetik, lingkungan, anatomi, fisiologi dan faktor mikrobia.

Genetika (keturunan)

Perbedaan hasil pemeriksaan potensi yang dilakukan di beberapa negara yaitu Jepang, USA, Indonesia maupun Eropa disebabkan karena strain/grup mencit yang digunakan.

Dari pernyataan tersebut sudah jelas bahwa secara genetis,
mencit yang dipakai sebagai model percobaan dari beberapa negara tersebut adalah berbeda.

Lingkungan

Meningkatnya kejadian penyakit infeksi pada hewan percobaan disebabkan karena kondisi lingkungan yang jelek dimana hewan tersebut tinggal. Maka dengan meningkatnya kejadian penyakit infeksi dan disertai dengan keadaan nutrisi yang jelek pula akan berakibat resistensi tubuh menurun, sehingga akan berpanggurah terhadap hasil suatu percobaan.

Kesimpulan dan Pembahasan

Dari uraian makalah tadi dapat disimpulkan bahwa terdapat dua faktor utama didalam mengontrol pertumbuhan dan perkembangan hewan percobaan (termasuk fenotipe), yaitu

- faktor keturunan (genetik),
- faktor lingkungan (eksternal)

Peningkatan mutu genetik dan adanya kontrol genetik dan disertai dengan peningkatan pengelolaan hewan percobaan akan sangat membantu dalam meningkatkan mutu/kualitas hewan percobaan, walaupun hewan tersebut tergolong hewan yang konvensional (ditinjau dari segi cara pemeliharaannya).

Peningkatan sistem pemeliharaan akan lebih diperlukan didalam penelitian biomeds dari sistem konvensional ke sistem yang lebih tinggi lagi dimasa mendatang sesuai dengan tantutan kemajuan zaman.

Usaha sentralisasi hewan percobaan yang dikelola secara ilmiah dengan disertai standardisasi hewan percobaan yang dimiliki akan sangat membantu dalam program penggunaan hewan percobaan sebagai model penelitian kedokteratan atau biomeds. Terlebih lagi dalam rangka pengawasan mutu produk-produk biologi maupun perbekalan farmasi lainnya yang beredar di Indonesia.

Daftar Pustaka

Cara Menghilangkan

Sambungan dari hal 2

Konsentrasi bahan/penyawa kimia yang dapat menimbulkan rasa dan bau dalam air juga dibatasi dengan mengolah air baku berdasarkan jenis bahan/penyawa yang ada. Adakalanya meskipun telah diolah masih tersisa sejumlah kecil bahan/penyawa kimia dan ini juga dapat digunakan GAC.

Sisa khlor yang ada dalam air minum dalam penggunaan klorin sebagai disinfektan memang diperlukan untuk membumihkan kuman yang mungkin masuk ke saluran distribusi, karena kebocoran pipa atau kurang rapatnya sambungan pipa. Bila bau yang timbul karena sisa khlor ini tidak dihendaki oleh konsumen, dapat dihilangkan dengan mengalirkannya melalui GAC.

Daftar Pustaka